
 i 

 
 

 
 

Instituto Federal de Educação, Ciência e Tecnologia Goiano – Campus Urutaí 
Programa de Pós-Graduação em Conservação de 

Recursos Naturais do Cerrado 

 
 

RESPOSTA DE ABELHAS A CENÁRIOS 
FUTUROS DE MUDANÇAS CLIMÁTICAS 

UTILIZANDO MODELOS DE NICHO 
ECOLÓGICO 

 
 

 
MILTON FERREIRA ALVES JÚNIOR 

 

 

                                        Orientador: Prof. Dr. Daniel Paiva Silva 

                                        Coorientador: Prof. Dr. Bruno Villela de Moraes e Silva 

                                        Coorientador: Prof. Dr. Matheus Souza Lima-Ribeiro  

 
 
 

Urutaí (GO) 
Fevereiro de 2019 

 



 ii 

 
 

Instituto Federal de Educação, Ciência e Tecnologia Goiano 
Reitor 

Prof. Dr. Vicente Pereira Almeida 

Pró-Reitor de Pesquisa e Pós-Graduação e Inovação 

Prof. Dr. Fabiano Guimarães Silva 

 

 

Campus Urutaí 
Diretor Geral 

Prof. Dr. Gilson Dourado da Silva 

Diretor de Pesquisa, Pós-Graduação e Inovação 

Prof. Dr. André Luís da Silva Castro 

 

 

Programa de Pós-Graduação em Conservação de  

Recursos Naturais do Cerrado 
Coordenador 

Prof. Dr. Ivandilson Pessoa Pinto de Menezes 

 

 

 
Urutaí (GO) 

Fevereiro de 2019 



 iii 

MILTON FERREIRA ALVES JÚNIOR 
 
 
 
 
 
 

RESPOSTA DE ABELHAS A CENÁRIOS 
FUTUROS DE MUDANÇAS CLIMÁTICAS 

UTILIZANDO MODELOS DE NICHO 
ECOLÓGICO 

 

Orientador  
Prof. Dr. Daniel Paiva Silva  

 
Coorientador 

Prof. Dr. Bruno Vilela de Moraes e Silva 
 

Coorientador 
Prof. Dr. Matheus Souza Lima-Ribeiro 

 
 

Dissertação apresentada ao Instituto Federal Goiano – 
Campus Urutaí, como parte das exigências do Programa 
de Pós-Graduação em Conservação de Recursos Naturais 
do Cerrado para obtenção do título de Mestre. 

 
 
 
 
 
 
 

Urutaí (GO) 
Fevereiro de 2019 



 iv 

Os direitos de tradução e reprodução são reservados. 

Nenhuma parte desta publicação poderá ser gravada, armazenada em sistemas eletrônicos, fotocopiada 
ou reproduzida por meios mecânicos ou eletrônicos ou utilizada sem a observância das normas de direito 
autoral. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
Dados Internacionais de Catalogação na Publicação (CIP) 

Sistema Integrado de Bibliotecas – SIB/IF Goiano 
 
 
 
 
 
 
 
 

 

A474r   Alves, Milton. 
 
         Resposta de abelhas a cenários futuros de mudanças climáticas utilizando modelos 
de nicho ecológico. Milton Alves. -- Urutaí, GO: IF Goiano, 2019. 
85 fls.  
 
Orientador: Prof. Dr. Daniel Paiva Silva. 
Coorientador: Prof. Dr. Bruno Vilela de Moraes e Silva 
Coorientador: Prof. Dr. Matheus Souza Lima Ribeiro 
 
Dissertação (Programa de Pós-Graduação em Conservação de Recursos Naturais do 
Cerrado) – Campus Urutaí do Instituto Federal Goiano, 2019. 
 
1. Interações Ecológicas. 2. Serviços Ecossistêmicos. 3.Espécies Exóticas. 4. Aréas 
Progidas. 5. Xylocopini. 6. Lithurgini. 7. Modelos de Nicho Ecológico. I. Silva, Daniel 
Paiva.  II. Moraes e Silva, Bruno Vilela de. III. Ribeiro, Matheus Souza Lima.  IV. Título.                                                                                                                          

CDU  57 
 





 vi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aos meus filhos, Raul e Cecília, cujos sorrisos foram 

essenciais para manutenção de minha estrutura capilar 

durante este processo de aprendizado. 

 

 

“Você tem direito a suas próprias opiniões, não a 

seus próprios fatos.” 

Daniel Patrick Moynihan



 vii 

AGRADECIMENTOS 

À minha esposa, Silvia, agradeço, primeiramente, pelo olhar crítico à redação 

técnica, desde a primeira versão do pré-projeto para a seleção deste programa de 

mestrado, sempre me auxiliando a solidificar conceitos e teorias ecológicas 

fundamentais ao escopo deste trabalho. Em todos os níveis da avalanche de emoções 

desses dois últimos anos, seu apoio, compreensão, estímulos e mesmo cutucões, foram 

imprescindíveis para a construção de minha mentalidade científica e formação como ser 

humano. 

Ao meu orientador, Daniel Paiva Silva, por ter estimulado meu potencial  e 

vontade de me aventurar nos universos da lógica e linguagem de programação, da 

estatística, e das modernas teorias ecológicas. A confiança dispensada em mim, alguém 

sem experiência laboratorial anterior nessas grandes áreas, foi força motivadora nos 

momentos em que até meus próprios neurônios, em choque, se colocavam inacessíveis 

para calibragem cognitiva. Em várias etapas da redação técnica, você assumiu o papel 

de parceria na redação, sem nunca perder oportunidade de passar algum aprendizado, de 

autocorrelação espacial ao uso de preposições. Escrever meu texto em inglês foi um 

deleite que me encheu de orgulho. Seu auxílio na construção de orações lógicas, diretas 

e com propriedade técnico-gramatical, foram essenciais na fluidez dos capítulos. 

Agradeço por despertar em mim a curiosidade e a paixão pela ciência, pela ecologia  e 

pelo livre pensamento crítico. Sua parceria, paciência e doação intelectual foram, e 

continuaram sendo, essenciais à minha formação profissional.  

Aos co-orientadores agradeço pelas sugestões, críticas, pela disposição, pela 

paciência e por todas as lições sobre a estruturação dos códigos em R. Ao Professor 

Matheus Souza Lima-Ribeiro, pela disciplina “Modelagem de Distribuição de Espécies”, 

essencial para roteirização dos códigos e para a correta aplicação dos conceitos teóricos 

pertinentes. A todos os e-mails respondidos com muito interesse e intensidade e a todas 

as ligações via Skype, fundamentais para a alavancagem dos trabalhos em momentos 

que as sombras de Mordor ofuscavam a viabilidade dos meus códigos. Ao professor 

Bruno Vilela de Moraes e Silva, por ter se doado, mesmo quando em trânsito, nas 

viagens de ida e volta de seu laboratório no Pós-doutoramento nos Estados Unidos ao 

Brasil. O incentivo em utilizar o Github e em aprender novas sintaxes em R, levaram 

este os códigos desenvolvidos para este trabalho a um nível de reprodutibilidade 



 viii 

impecável. Sem a prontidão de vocês dois, várias das análises das análises e formas de 

apresentação dos dados, seriam comprometidas. Muito obrigado!  

Aos meus pais, Rute e Milton, pelo suporte emocional, cuidados e incentivos. 

Todo meu esforço individual na carreira acadêmica só foi possível porque vocês me 

propiciaram boa formação pessoal dentro do máximo de suas capacidades. Muito 

obrigado pela doação de parte de suas vidas a mim. 

Ao Professor Fernando Amaral Silveira, do departamento de Zoologia do campus 

Viçosa da Universidade Federal de Minas Gerais (UFMG), por ter cedido ocorrências 

que compuseram parte do banco de dados das abelhas utilizadas do capítulo 3. 

Aos programas de pós-graduação em Conservação do Cerrado do IF Goiano, em 

Ecologia e Evolução da Universidade Federal de Goiás (UFG) e Zoologia da 

Universidade Federal do Pará (UFPA), pelas disciplinas integrantes de meu currículo de 

pós-graduado. 

Aos colegas do laboratório COBIMA pelos inúmeros auxílios, como ao rodar os 

códigos dos modelos remotamente.  

Ao Instituto Federal do Tocantins pela agilidade administrativa em analisar e me 

conceder o afastamento para pós-graduação. 

  



 ix 

RESPOSTA DE ABELHAS A CENÁRIOS FUTUROS DE MUDANÇAS 
CLIMÁTICAS UTILIZANDO MODELOS DE NICHO ECOLÓGICO 

 

RESUMO 

 
Mudanças globais como perda de habitat, invasões de espécies exóticas e mudanças 

climáticas têm sido sugeridas como as principais causas desse declínio dos 

polinizadores. Assim, entender como as abelhas responderão às mudanças climáticas 

futuras pode nos mostrar como os serviços ecossistêmicos de polinização podem mudar, 

com consequências tanto para a agricultura, para o funcionamento dos ecossistemas, 

bem como para as atividades econômicas influenciadas pela polinização.  No capítulo 

um, intitulado “Integrando preditores bióticos em modelos de nicho: resposta de 

espécie exótica na américa do sul a mudanças climáticas globais”, avaliamos o efeito 

da inclusão de componentes bióticos (distribuições potenciais das plantas associadas) 

sobre a distribuição potencial da abelha exótica Lithurgus huberi Ducke (1907) na 

América do Sul. Nossos resultados mostraram que a inclusão do componente biótico 

melhorou nosso modelo. Além disso, a distribuição de áreas adequadas a L. huberi no 

futuro tende diminuir com significativa mudança das áreas atualmente ocupadas. Em 

nosso segundo capítulo, intitulado “Mudanças climáticas retrairão a faixa de 

distribuição adequada de abelhas carpinteiras da região Neotropical”, o principal 

objetivo foi avaliar os efeitos das mudanças climáticas globais sobre a distribuição 

futura, e sua sobreposição a áreas de proteção ambiental da América do Sul, para três 

espécies de abelhas carpinteiras nativas do Cerrado brasileiro, Xylocopa abbreviata 

Hurd & Moure (1963), Xylocopa truxali Hurd & Moure (1963) e Xylocopa vestita Hurd 

& Moure (1963). Nossos resultados mostraram redução significativa da área de 

distribuição futura de todas as Xylocopa avaliadas. 

Keywords: Interações Ecológicas, Serviços Ecossistêmicos, Espécies Exóticas, Aréas 

Progidas, Xylocopini, Lithurgini.  
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RESPOSTA DE ABELHAS A CENÁRIOS FUTUROS DE MUDANÇAS 
CLIMÁTICAS UTILIZANDO MODELOS DE NICHO ECOLÓGICO 

 

ABSTRACT 
Pollinators, especially bees, are threatened by environmental degradation, demanding 

effective strategies and public policies to protect them from the ongoing decline. Global 

changes such as loss of habitat, invasion of exotic species and climate change have been 

suggested as the main causes of this decline. Above all, climate change is of greater 

concern in the scientific world, since climate is the primary control of species 

distribution and ecological processes. Thus, understanding how bees respond to future 

climate change can show us how ecosystem services can change, with consequences for 

both agriculture, ecosystem functioning, and the economic activity involved in 

pollination. In chapter one entitled "Integrating biotic predictors into niche models: 

response of an exotic species in South America climate change", we evaluated the 

effect of inclusion of biotic components, the predictive variables derived from potential 

plant distributions, upon the potential distribution of the exotic bee Lithurgus huberi 

Ducke (1907) in South America. Our results showed that the inclusion of the biotic 

component partially improved our model and that of L. huberi. Besides, the bee’s 

distribution tends to decrease in the future, regardless of the scenario considered, but 

especially in the most pessimistic one. Our main objective in the second chapter, entitled 

"Climate change will contract the distribution range of Neotropical carpenter 

bees", was to assess the effects of global climate change on future distribution by 

underlying areas of environmental protection for Xylocopa abbreviata Hurd & Moure 

(1963), Xylocopa truxali Hurd & Moure (1963), and Xylocopa vestita Hurd & Moure 

(1963) in South America. Our results showed a significant reduction of the future 

distribution area of all Xylocopa species evaluated as e well in protected areas 

 
 
 

Keywords: Ecological Interactions, Ecological Services, Biotic Components,  Exotic Species, 

Protected Areas, Lithurgini, Xylocopini.
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CAPÍTULO 1 

1.1 INTRODUÇÃO GERAL 

Polinizadores, sobretudo abelhas, estão ameaçados pela degradação ambiental, 

exigindo estratégias eficazes e políticas públicas para protegê-los (Potts et al., 2016; 

Settele et al., 2016). As mudanças climáticas globais têm sido consideradas um dos mais 

preocupantes condutores do declínio dos polinizadores em todo o mundo (Ghazoul, 

2005; Hegland et al., 2009; Potts et al., 2010; Steffan-Dewenter et al., 2005; Winfree et 

al., 2009). Essas mudanças podem comprometer a riqueza e abundância de espécies de 

abelhas (Papanikolaou et al., 2016), a sincronização de fenologia e padrões de atividade 

diurna de polinizadores (Stevenson et al., 2015), modificar redes de interação 

polinizadores-plantas (Hegland et al., 2009; Memmott et al., 2010; Pecl et al., 2017) e 

alterar as áreas de ocupação adequadas dessas espécies (Giannini et al., 2012; Parmesan 

and Yohe, 2003). Isto é particularmente importante, uma vez que os serviços de 

polinização fornecidos pelas abelhas são importantes para a manutenção da diversidade 

dos ecossistemas naturais e também da agricultura e produção de alimentos (Costanza 

et al., 2014). 

As mudanças observadas nos padrões fenológicos de espécies demonstram que as 

mudanças climáticas globais estão, de fato, afetando os ecossistemas (Parmesan, 2006; 

Parmesan and Yohe, 2003; Pecl et al., 2017; Visser and Both, 2005). Isso pode ser 

observado à medida em que o nível trófico diretamente abaixo, e.g. planta associada, 

apresenta seu desenvolvimento atrasado ou adiantado, se o nível trófico superior, e.g. 

polinizador, não conseguir alterar seus padrões fenológicos em igual proporção, levando 

ao desacoplamento fenológico de suas atividades sazonais. (Kuntner et al., 2014; Ovalle-

Rivera et al., 2015; Parmesan, 2006; Schweiger et al., 2008; Visser et al., 2004) . Além 

disso, o padrão de distribuição geográfica das espécies pode ser alterado pelas mudanças 

climáticas tendo em vista suas necessidades climáticas intrínsecas, levando a possível 

desencontro de espécies no espaço geográfico (Parmesan and Yohe, 2003; Schweiger et 

al., 2012, 2008). Assim, o desacoplamento fenológico e o deslocamento geográfico 

inesperados podem afetar as interações bióticas tanto por alterarem as distribuições e 

abundâncias das espécies quanto por causarem extinções (Blois et al., 2013; Schweiger 

et al., 2008). 
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O uso de modelos de nicho ecológico (MNE; também chamados Modelos de 

Distribuição Potencial – mas veja Peterson and Soberón, 2012) é abordagem comum na 

literatura tanto para avaliar o impacto das mudanças climáticas na potencial distribuição 

de futura de espécies (Araújo and Peterson, 2012; Giannini et al., 2017a; Silva et al., 

2018), quanto para avaliar o estabelecimento de espécies exóticas (Jiménez-Valverde et 

al., 2011; Silva et al., 2014).  

Uma característica marcante dos MNE é a dependência do conceito de nicho 

ecológico (Elith et al., 2006; Guisan and Thuiller, 2005; Guisan and Zimmermann, 2000; 

Soberón, 2007). Os primeiros conceitos de nicho adotados pela comunidade científica 

foram propostos por (1) Grinnell (1924), que levava em consideração as condições do 

ambiente e (2) Elton (1927) propôs que as interações entre espécies eram fatores cruciais 

na delimitação do nicho das espécies. O conceito moderno de Hutchinson (1957) abarca 

esses dois conceitos e define nicho ecológico como “um hipervolume, n-dimensional, 

cujos eixos abrangem condições, recursos e interações nos quais os indivíduos de uma 

espécie são capazes de sobreviver, crescer e reproduzir” (Peterson et al., 1999). Após 

este longo processo de amadurecimento do termo ecológico, Soberón (2007) ressalta que 

o nicho utilizado em MNE é o nicho Grinnelliano. Tanto os nichos de Elton (1927) 

quanto o de Grinnell (1924) são relevantes para a compreensão da distribuição dos 

indivíduos de dada espécie. Entretanto, enquanto as interações que compõem o nicho 

Eltoniano são geralmente observadas em resoluções espaciais finas (<1km2), o nicho 

Grinneliano é mais adequado aos MNE quando se trabalha em resoluções espaciais 

amplas. Nestes métodos, as variáveis abióticas (cenopoéticas) são preponderantes na 

modulação da distribuição espacial das espécies (>1km2) (Hortal et al., 2010; Soberón, 

2007). Apesar das interações ecológicas também serem importantes na determinação da 

distribuição das espécies (em micro-escalas), a disponibilização de vasta quantidade de 

variáveis abióticas em bancos de dados online (e.g. Hijmans et al., 2005) permitiu a 

popularização dos métodos de MNE e seu uso em questões relacionadas á conservação 

de espécies (Guisan et al., 2013). 

Nesse contexto, em nosso primeiro capítulo, intitulado “Integrando preditores 

bióticos em modelos de nicho: resposta de espécie exótica na américa do sul a 

cenários futuros de mudanças climáticas”, avaliamos o efeito da inclusão de 

componentes bióticos (distribuições potenciais das plantas associadas) para gerar a 

distribuição potencial da abelha exótica Lithurgus huberi Ducke (1907) na América do 

Sul. Adicionalmente, ao se considerar as mudanças climáticas globais, avaliamos como 
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a distribuição da espécie e sua interação com as plantas polinizadas se dará no futuro. 

As plantas foram consideradas como recursos alimentares para as abelhas e introduzidas 

no modelo como componentes bióticos na previsão de distribuição. Realizamos 

comparações entre modelos com e sem a incorporação dos componentes bióticos  em 

nossos procedimentos de modelagem. Analisamos qual desses procedimentos melhora a 

capacidade preditiva do modelo. Por fim, avaliamos os padrões de adequabilidade futura 

da abelha, avaliando a quantidade de áreas perdidas e ou ganhas quando comparado com 

a distribuição potencial da abelha no presente. Nossos resultados mostraram que a 

inclusão do componente biótico nosso modelo em um dos métodos preditivos avaliados. 

Além disso, observamos que a distribuição potencial de L. huberi tende a diminuir no 

futuro, do cenário considerado, mas especialmente no cenário mais pessimista.  

Em nosso segundo capítulo, intitulado “Mudanças climáticas retrairão a faixa 

de distribuição adequada de abelhas carpinteiras da região Neotropical”, o principal 

objetivo foi avaliar os efeitos das mudanças climáticas globais sobre a distribuição 

futura de três espécies de abelhas carpinteiras nativas do Cerrado brasileiro, Xylocopa 

abbreviata Hurd & Moure (1963), X. Truxali Hurd & Moure (1963) e X. vestita Hurd & 

Moure (1963). Utilizamos diversos métodos de MNE para predizer áreas de ocorrência 

potencial dessas espécies. Por fim, também estimamos a proporção da área predita de 

cada espécie ocorrendo dentro de unidades de proteção ambiental, comparando o cenário 

climático presente com quatro cenários futuros de emissões de carbono atmosférico, do 

mais otimista ao mais pessimista, para o ano de 2070. Mostramos redução da área 

potencialmente adequada para as três espécies de abelhas carpinteiras nos quatro 

cenários de futuro. Ademais, a quantidade de áreas protegidas foi consideravelmente 

reduzida nos cenários de futuro. 
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2. INTEGRANDO PREDITORES BIÓTICOS EM MODELOS DE 
NICHO ECOLÓGICO 
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Ecological Modelling 
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INTEGRATING BIOTIC PREDICTORS IN ECOLOGYCAL NICHE MODELLING: 
RESPONSE OF AN EXOTIC BEE IN SOUTH AMERICA TO CLIMATE CHANGES 

 

ABSTRACT 

Biotic interactions can influence species’ distribution range. Considering the effects of 

global climate changes, many studies attempted to integrate them into Ecological Niche 

Models (ENM) procedures. However, there is a lack of studies evaluating the effects of 

the inclusion of such interactions upon the distribution of species in scenarios of climate 

change. Here we evaluated the predicted range of an exotic bee species in future 

scenarios, including its associated plants as predictor variables.  The bee Lithurgus 

huberi Ducke, 1907 (Apidae: Megachilinae: Lithurgini) is an exotic species in South 

America. Because it is oligolectic to flowers with large pollen grains, we evaluated 

whether the integration of the biotic component (relationship plants-bee) improves the 

predictive capacity of its ENM in both current and in the future range distributions. We 

used all climate models of the four representative concentration pathway (RCP). To 

reduce uncertainty in our results, we selected three models of each RCP by means of 

cluster analysis. We then use plant predictions for the present as additional predictor 

variables to predict the future distribution of L. huberi in all RCPs. Our evaluation index 

was a statistical test based on the True Presence Rate estimated by each prediction. Our 

results show that the inclusion of the biotic component improved our models in one of 

the predictive methods evaluated. In addition, we observed that the potential distribution 

of L. huberi tends to decrease in the future, regardless of the RCP considered, but 

especially in RCP8.5, the most pessimistic scenario. 

 

Keywords: Lithurgini, Species Interactions, Pollination, Exotic Species, Phenology, Biotic 

Component. 
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2.1.1  INTRODUCTION 

The atmospheric concentration of CO2 and other greenhouse gases recorded 

successive increases after the industrial revolution, causing rise in global temperature 

averages, changes in precipitation patterns, elevation in the average sea level, and 

changes to the frequency and intensity of extremes climatic events (Blois et al., 2013; 

Hughes, 2000; Parmesan, 2006). Several possible impacts on biological systems have 

been investigated such as: 1) changes in the structure and composition of communities, 

leading to the progressive impoverishment of some communities and relative 

advancement of opportunistic species (Thuiller et al., 2007); 2) interferences in species’ 

dispersal abilities (Travis et al., 2013); 3) changes in interspecific interactions, for 

instance in parasitoid-host interactions (Tylianakis and Binzer, 2014); 4) changes in 

metabolic rates and physiological processes (Dillon et al., 2010); and 5) increasing the 

probability of species extinction (Thomas et al., 2004). The spatial distribution of 

species is determined by both abiotic and biotic conditions as well by their ability to 

reach regions in the geographic space (Soberón, 2007; Soberón and Peterson, 2005). 

Hence, it is possible that changes in climatic conditions lead to changes in these patterns 

of distribution, since species should "pursue" the isotherms that guarantee them better 

physiological tolerance (Parmesan, 2006; Schweiger et al., 2008).  

Biotic interactions concern a central part of the ecological framework, as their 

effects on the distribution of species and communities are utmost important (Araújo and 

Luoto, 2007; Blois et al., 2013; Silva et al., 2018; Soberón, 2010; Staniczenko et al., 

2017). The observed changes in phenological patterns of species demonstrate that 

climate change is, in fact, affecting such interactions of living systems (Parmesan, 2006; 

Parmesan and Yohe, 2003; Pecl et al., 2017; Visser and Both, 2005). This may be 

observed since a trophic the level directly below (e.g. associated plants) delay or 

advance their phenological/developmental events and if the upper trophic (e.g. 

pollinators) cannot change their phenological patterns accordingly (Visser et al., 2004). 

Hence, unexpected phenological and geographical decoupling may affect biotic 

interactions both by altering species’ distributions (Schweiger et al., 2008) and by 

leading to species’ extinctions (Blois et al., 2013). 

While considering exotic species, their potential to occupy new regions may be 

positively affected by the action of climate change (Lockwood et al., 2009). Generally, 
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the invasion process of exotic species is characterized by three stages (Richardson et al., 

2000): introduction, naturalization, and  species dissemination. In the first stage, the 

species reach its new distribution areas and climatic ranges. In the second stage, some 

individuals from self-sustaining populations arrive and establish other populations in 

the new geographic range. Eventually, given the right conditions, in the third stage, they 

will spread in the geographic space, causing further expansion of their distribution area. 

Exotic species who are successful in the "naturalization" stage, tend not to have very 

refined requirements to occur, which increases the probability of success of these species 

in scenarios of global climate change (Lockwood et al., 2009; Parmesan, 2006; Pecl et 

al., 2017; Richardson et al., 2000).  

Ecological Niche Modeling (ENM; also known as Potential Distribution Models 

- but see Peterson and Soberón, 2012) compose an array of approaches that may be used 

to assess the invasion potential and establishment of exotic species (Jiménez-Valverde 

et al., 2011), as well to assess the impact of climate change on their distributions (Araújo 

and Peterson, 2012). These models relate the species’ known occurrences with the 

present climate to predict the potential distribution of a given species by the intercession 

of these biotic and abiotic elements (Soberón, 2007; Soberón and Peterson, 2005). The 

ENM establishes a multidimensional environmental space (Elith et al., 2006), where it 

is possible to estimate species’ niche parameters to estimate their potential distribution 

in areas climatically similar to those of the species’ known occurrences (Peterson et al., 

2011; Soberón, 2007; Soberón and Peterson, 2005). Therefore, it is possible to obtain 

distribution range estimates of species in areas where their distribution is still unknown  

(Soberón and Peterson, 2005).  

Eltonian niches are generally observed in narrow spatial resolutions (<1Km2), 

while the Grinnelian niches are ruling in wide spatial resolutions (>1Km2)(Hortal et al., 

2010). Considering that Grinnelian niches are easier to deal with when considering the 

EMNs, abiotic variables (classified as “scenopoetic” by Grinnell) are preponderant in 

the modulation of the potential species distribution  (Soberón, 2007) in relation to the 

biotic ones (classified by Grinnell as the “interative” variables). Nevertheless, among 

the ecological/predictor variables used in these methods, resulting in both the success 

of the establishment of exotic species and in the reduction of predicted areas as suitable 

ones, it is generally expected that the biotic components of the ecological niches have 

the most significant effects on the distribution of the modeled species (Jiménez-
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Valverde et al., 2011; Soberón, 2007; Soberón and Peterson, 2005). However, the 

strategy of including biotic components in ENM, as well the understanding of which 

spatial scale in which they are relevant, are not yet consolidated in the literature 

(Anderson, 2016; Hortal et al., 2010; Soberón, 2010, 2007; Soberón and Peterson, 2005). 

The bee Lithurgus huberi Ducke, 1907 (Apidae: Megachilinae: Lithurgini) is 

considered to be an exotic species in South America (Snelling, 1983) due to their 

morphological similarities with Lithurgus antratus Smith, 1853, representative of an 

Indo-Australian complex of eight species, which were grouped to represent a single 

taxonomic unit (Michener, 1965). This bee is univoltine and nests in powdery wood, 

allowing the dispersion of its individuals over great distances (Camillo et al., 1994, 

1983). In addition, as in other cases in the genus Lithurgus, it appears to be oligoletic to 

plants with large pollen grains (Pick and Schlindwein, 2011). While, in its natural range, 

L. huberi was observed collecting pollen from Asteraceae and, specially, Malvaceae 

(Michener, 2007), in its invaded area, it was observed collecting pollen from both 

Convolvulaceae (particularly from Ipomoea e Merremia) and Malvaceae (Sida sp. e 

Gossypium spp.) (Camillo et al., 1994, 1983; Michener, 2007; Pick and Schlindwein, 

2011).  

Here we extend the study done by Silva et al. (2014) while modeling the potential 

distribution of the same exotic bee. Nonetheless, we made use of several future climatic 

scenarios to evaluate how the potential interaction of the bee and the pollen plants may 

take place in the future. In this context, we evaluated the effect of considering biotic 

predictors derived from the potential distributions of L. huberi’s associated plants on its 

potential distribution in South America. In addition, we evaluated how this species’ 

distribution and interactions with such plants may take place in the future. For that, we 

included the predicted ranges of the associated plants as biotic components of L. huberi’s 

current and future distributions. We performed modelling experiments comparing 

models with and without these biotic components to assess if such procedures improve 

our models’ predictive ability to estimates L. huberi’s ranges. Finally, considering the 

bee’s future distribution range, we also, measured the amount of lost and/or gained range 

areas in comparison to its the potential current distribution.  
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2.2 METHODS 

2.2.1 Occurrence data 

We obtained the geographic occurrences of the bee and its associated plant 

species from the database structured by Silva et al. (2014). This database consists of 

occurrences obtained from different sources: 1) the internet accessible databases Global 

Biological Information Facility (GBIF; http://www.gbif.org), Species Link of the 

Reference Center on Environmental Information (CRIA; http://www.splink.cria.org.br), 

Inter-American Biodiversity Information Network (http://www.iabin.databasin.org) and 

Discover Life Bee Species Guide and World Checklist (http://www.discoverlife.org); 2) 

scientific articles and environmental reports published in specific literature and internet ; 

4) published literature and 5) field surveys. 

We collected data on the occurrences of all plant species reported to be used by 

L. huberi as pollen resources in South America (Camillo et al., 1994, 1983; Pick and 

Schlindwein, 2011). We gathered all the available information from Ipomoea nil (L.) 

Roth, Ipomoea bahiensis (L.) Roth, Ipomoea purpurea (L.) Roth, Ipomoea indica (Burm. 

F.) Merril, Ipomoea cairica (L.) Doce, Ipomoea asarifolia (Desr.) Roemer & Schultes 

and Merremia aegyptia (L.) Urban from CRIAS’ Species Link, as well from GBIF. We 

disregarded the records obtained for Sida sp. e Gossypium spp. because at the time of 

the construction of the database there were no species-specific records of both these 

genera and L. huberi reported in the literature. Thus, the species that we modeled in this 

work were: the exotic bee L. huberi, and seven plants, six Ipomoea and one Merremia, 

associated with it in South America.  

2.2.2 Selecting environmental variables and processing occurrences 

We encoded all data preparation processes and variables selection, occurrences 

processing, and predictive methods operationalization in the open source language R 

(Development Core Team, 2018). We delimited the extension of the grid cells of our 

predictor variables to South America, with the resolution of 2.5 arcmin (cells with ∼4 

km2 on the equator). We collected all 19 climatic variables (abiotic component), both 

for the current (interpolations of observed data, representative of 1960-1990) and for 

each one of the 11 Atmospheric Oceanic Global Circulation Models (AGOCMs hereon) 

http://www.gbif.org/
http://www.splink.cria.org.br/
http://www.iabin.databasin.org/
http://www.discoverlife.org/
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common at all four IPCC’s Representative Concentration Pathways (RCP hereon) 

(RCP2.6, RCP4.5, RCP6.0 e RCP8.5), with projections for 2070 (average interpolations 

for 2061-2080). Such variables are freely available in the online database WorldClim   

(www.worldclim.org; Hijmans et al., 2005).  

Modelling with all climatic variables may produce overfitted models (Jiménez-

Valverde et al., 2011). Thus, we selected our predictor variables using an Exploratory 

Factor Analysis (EFA hereon) with VARIMAX axis rotation type. The EFA is a method 

commonly used in the social sciences to identify the factors (structure or axes) that 

highlights the correlation of each raw variable with each one of these factors (Distefano 

et al., 2009; Lawley and Maxwell, 1962). We defined the number of factors in the EFA 

graphically, by performing a scree test (Cattell, 1966) and analyzing the resulting plot 

generated via the function fa.parallel from the psych package (Revelle, 2018). This test 

showed us that only five factors, that reached observed eigenvalues higher than a random 

expectation, were needed as environmental predictors for South America. Each one of 

these factors provide a specific loading value, ranging from -1 to 1, for each variable, 

where 1 represents the maximum correlation value to the factor (Cattell, 1966; Distefano 

et al., 2009). Starting from our initial set of 19 abiotic variables for the present scenario, 

we selected the variables with the highest loading value to represent each one of the five 

EFA axes (Tab. 2-1). Therefore, our set of abiotic components was composed by: Mean 

Diurnal Range (Bio02); Isothermality (Bio03); Mean Temperature of Warmest Quarter 

(Bio10); Precipitation of Driest Month (Bio14); Precipitation of Wettest Quarter 

(Bio16).  

Usually, the climatic variables derived for future scenarios and widely used in 

ENMs studies are generated by the production of several AOGCMs by independent 

research organizations. Broadly speaking, these models are mathematical 

representations of physical processes operating in the atmosphere, ocean, cryosphere, 

and on the earth's surface (Stocker et al., 2013). Each AOGCM has its peculiarities, 

since each one uses a unique set of equations to simulate the climatic dynamics. Thus, 

differences in the initial configuration and in the algorithms that generate this model 

inevitably lead to different environmental predictions (McGuffie and Henderson-Sellers, 

2014). In contrast to the current scenario, where we modeled the species with only one 

AOGCM available in Worldclim, for the future scenarios, we used several AOGCMs 

available for the four RCPs available in WorldClim. To reduce the repeatability between 

http://www.worldclim.org/
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models that are similar and that may increase the uncertainty of the predictions (Varela 

et al., 2015), we used a hierarchical clustering analysis (HCA hereon) to select the 

appropriate AOGCMs along all four RCPs. 

Table 2-1 Results of the Exploratory Factor Analysis with VARIMAX axis rotation among the 

19 WorldClim variables. Bold values represent loading greater than 0.8. Variables in bold 

represent those that we maintained in our study. 

  FACTORS 

VARIABLES COD. 1 2 3 4 5 

Annual Mean Temperature bio01 0.914 0.042 0.315 0.223 -0.103 

Mean Diurnal Range bio02 -0.121 -0.358 -0.238 -0.194 0.865 

Isothermality bio03 0.312 0.109 0.842 0.278 -0.008 

Temperature Seasonality bio04 -0.294 -0.014 -0.856 -0.376 0.177 

Max Temperature of Warmest Month bio05 0.982 -0.040 -0.058 0.115 0.101 

Min Temperature of Coldest Month bio06 0.782 0.124 0.451 0.279 -0.299 

Temperature Annual Range bio07 -0.223 -0.220 -0.720 -0.302 0.536 

Mean Temperature of Wettest Quarter bio08 0.920 0.045 0.193 0.141 0.024 

Mean Temperature of Driest Quarter bio09 0.777 0.039 0.420 0.275 -0.247 

Mean Temperature of Warmest Quarter bio10 0.985 0.051 0.046 0.130 -0.071 

Mean Temperature of Coldest Quarter bio11 0.821 0.041 0.474 0.281 -0.137 

Annual Precipitation bio12 0.280 0.527 0.303 0.720 -0.129 

Precipitation of Wettest Month bio13 0.351 0.190 0.342 0.835 -0.127 

Precipitation of Driest Month bio14 -0.010 0.956 0.142 0.209 -0.106 

Precipitation Seasonality bio15 0.039 -0.686 0.222 0.032 0.282 

Precipitation of Wettest Quarter bio16 0.349 0.207 0.340 0.837 -0.119 

Precipitation of Driest Quarter bio17 0.009 0.946 0.150 0.250 -0.120 

Precipitation of Warmest Quarter bio18 0.136 0.548 0.181 0.415 0.138 

Precipitation of Coldest Quarter bio19 0.153 0.430 0.185 0.551 -0.297 

To maintain the models’ comparability, we initially selected only the 11 

AOGCMs common to the four RCPs. Then, we built four initial arrays, one for each 

RCP, with the 19 variables of the 11 AOGCMs, using the abind function  from the 

package abind (Plate and Heiberger, 2016). We classified the models into groups using 
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the correlation between their predictions. Finally, we used the hcluster function from 

the package amap (Lucas, 2018) to proceed with our HCA, ordering the similarities 

among the predictions of the models based on the correlation between the predictions in 

the AOGCMs among the same variables. We set the maximum number of clusters to 

four. Finally, we analyzed all AOGCM from the four resulting dendrograms following 

the criteria of 1) be in only one of the four groups of the individual cluster and 2) be 

present in all four dendrograms referring to each RCP. Hence, we selected the AOGCMs 

CCSM4, IPSL-CMSA-LR and MIROC-ESM in all RCPs as our future variable sets, to 

represent the future distribution of our modeled species (Fig 2-1). 

Figure 2-1 Hierarchical clustering of the 11 AOGCMs according to the correlation between all 

19 climatic variables for the future scenarios in A) RCP 2.6, B) RCP 4.5, C) RCP 6.0, and D) 

RCP 8.5. ▼ indicates the selected AOGCMs in all scenarios: CCSM4, IPSL-CMSA-LR and 

MIROC-ESM. RCP: Representative Carbon Pathway. 

To avoid potential effects of spatial autocorrelation between the occurrences of 

the eight species (one bee and  seven host plants), we used the spThin package (Aiello-

Lammens et al., 2015) to eliminate occurrences that were very close to each other. We 

only kept the occurrences that were at a minimum distance of 20 km from one another 
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in each species’ occurrence dataset used in our models (Fig. 2-2 B). After the geographic 

space filtering process, the total of spatially unique occurrences remaining for each 

species was: 50 for L. huberi, 170 for I. asarifolia, 160 for I. bahiensis, 157 for I. cairica, 

215 for I. indica, 338 for I. nil, 232 for I. purpurea e 239 for M. aegyptia. 

We divided the occurrences of all species into 10 training-testing subsets, where 

in each of these subsets, 70% of the occurrence records randomly assigned to the training 

subsets and the remaining 30% were assigned to the testing subsets (Fig 2-2 C). We used 

the same subsets in the same order in all our modelling runs for all climatic scenarios 

considered here.  

2.2.3 Experiments procedures and analysis of biotic interactions  

Given the predictive ENM methods’ individual biases and the uncertainty 

natures, they may result in different distribution patterns for the modeled species (Barry 

and Elith, 2006; Rocchini et al., 2011). Thus, we predicted L. huberi’s distribution and 

those of its associated plants using three different predictive methods (Fig 2-2 D): 1) 

BIOCLIM (Booth et al., 2014; Nix, 1986), implemented by the bioclim function from 

dismo package (Hijmans et al., 2017); 2) Maximum Entropy (MaxEnt; Phillips et al., 

2006; Phillips and Dudík, 2008), using the MaxEnt function from dismo package, loaded 

within the package by the MaxEnt standalone program installation; and 3) Support 

Vector Machines (SVM; Schölkopf et al., 2001; Tax and Duin, 2004), by using the ksvm 

function from kernlab package (Karatzoglou et al., 2004). 

Our first modelling experiment consisted of a set of different treatments. In the 

initial treatment (CLIMA hereon), we model the potential distribution of L. huberi and 

its seven associated plant species for the current scenario, using only the abiotic/climatic 

variables. From the modeled suitabilities of L. huberi`s associated plants, we generated 

four sets of biotic components that we used in the other treatments of this first modeling 

experiment (Fig. 2-2 F.1). Then, we model the potential distribution of L. huberi, now 

having as predictors, in addition to the abiotic variables, four sets of biotic components, 

one specific to each new treatment. Each of these generated biotic components contains 

a specific amount of predictor variables, being: 1) the suitability of each species of plant 

cut into presence-absence maps (SEP-PA hereon); 2) the raw suitability for each plant 

species (SEP-SUIT); 3) sum of the presence and absence values of all plant species by 

grid cells (STK-PA); 4) the average plant species suitability per grid cell (STK-SUIT). 
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Figure 2-2 Flowchart and summary of the modeling experiments performed in this study. 

Experiment # 1 models the distribution of L. huberi bee and associated plants in the present: 

(A) occurrences datasets; (B) filtering occurrences in the geographic space; (C) partition of 

occurrences into test-training subsets; (D) parameterization of general models and modeling 

procedures; (E) evaluation of the resulting predictions and ensembles of all predictions and 

methods by scenario; (F) additional stages of Experiment # 1 - (F.1) generation of biotic 

components from plant predictions and (F.2) comparison of L. huberi distribution without and 

with biotic components. Experiment # 2 models the potential distribution of L. huberi in the 

four future climate scenarios, using the same methods from (A) to (E) employed in experiment 

# 1. 

 
Lastly, before we proceeded to our second modeling experiment, we compared 

the potential distribution of L. huberi in the current scenario among the five treatments 

(CLIMA, SEP-PA, SEP-SUIT, STK-PA, STK-SUIT) (Fig. 2-2 F.2). Then, we used the 

treatment that best represented L. huberi’s suitability in the current scenario to generate 

L. huberi’s predictions for the four future RCPs (Fig 2-3). 

2.2.4 Evaluation and ensembles 

One way of evaluating the predictions, commonly used by ecological niche 

modelers, is through metrics associated with pseudo-absences, where absence data is 

generated to fill the lack of knowledge regarding real absences. In this type of 

evaluation, after the determination of the predictions by using thresholds that makes the 

balance between the errors of omission and commission (e.g. the ROC threshold; Liu et 

al., 2011, 2005), the predictions are evaluated by a metric compatible with pseudo-

absences (e.g. true skill statistic; TSS; Allouche et al., 2006). This type of evaluation 

may represent conceptually flawed analyses given the unreal nature of pseudo-absence 

data (Golicher et al., 2012; Hirzel et al., 2006; Lobo, 2016; VanDerWal et al., 2009). 

Moreover, different scales applied in the creation of dist ribution maps using pseudo-

absences may generate divergent final results, depending on the proximity to the 

occurrences of the known species (Lobo and Tognelli, 2011; VanDerWal et al., 2009). 

Thus, to avoid these potential setbacks, we grounded our modelling procedures in using 

presence only methods. The statistical test we adopted here, D, was adapted from 

Pearson et al., 2007 , defined simply as 
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                                           𝐷 =  𝑇𝑃𝑅 ∗ (1 − 𝑝𝑖)                      

Where, TPR refers to the True Presence Rate (TPR), and pi refers to the proportion of 

the area predicted as presence for the species.  

Here, we only changed the logic of weighting success binarily (hit/miss), 

described by Pearson et al. (2007), ), for a percentage rate of success, i.e. ranging from 

0 to 1. Models that predict the entire area of study as the presence of the species are 

trivial, as they also predict all occurrence points as true (Golicher et al., 2012; Pearson 

et al., 2007). We used this metric as the weight for assembling the predictions from all 

predictive methods (Fig. 2-2 E). Thus, low values of D indicate models of low predictive 

ability and assume a negligible weight in the ensemble, since they are reflected directly 

in the final weighted suitability. On the other hand, models with high predictive ability 

would be those that predict a relatively small area as the presence of the species and , 

even so, they hit the points of occurrence of the species. These models with higher D 

values contribute with greater importance for the final ensemble (Hirzel et al., 2006; 

Pearson et al., 2007; Peterson et al., 2011; Shcheglovitova and Anderson, 2013).  

We ensemble the 10 prediction replicates, both for the current as well for all four 

future scenarios, into a single map for each scenario, via a weighted average with all 

predictions made from each predictive method. We repeated this process in all modeling 

experiments for L. huberi in the different treatments of predictor variables and modeled 

climatic scenarios. 

We used Repeated Measures ANOVAs to: 1) select the most representative 

treatment of the L. huberi current distribution, and with it model and analyze L. huberi’s 

future distribution in the four RCPs; 2) describe the pattern of retraction or expansion 

of the exotic bee’s predicted range in the future. All R scripts written for our modelling 

procedures are available at https://github.com/miltonmta/huberi.  

https://github.com/miltonmta/huberi
https://github.com/miltonmta/huberi
https://github.com/miltonmta/huberi
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2.3 RESULTS 

The D values obtained for the distribution of L. huberi in each modeling method 

were 0.398 ± 0.067 (average ± standard deviation) for Bioclim, 0.468 ± 0.078 for 

MaxEnt, and 0.614 ± 0.053 for SVM. In general, the average values of D, considering 

all methods together, were 0.501 ± 0.112 for L. huberi, 0.581 ± 0.141for I. asarifolia, 

0.555 ± 0.140 for I. bahiensis, 0.700 ± 0.100 for I. cairica, 0.495 ± 0.165 for I. indica, 

0.353 ± 0.146 for I. nil, 0.359 ± 0.142 for I. purpurea, and 0.459 ± 0.134 for M. aegyptia. 

Considering the different treatments used to determine L. huberi’s distribution in 

our models, the treatment SEP-PA (modeled with the suitability of each plant species 

cut into presence-absence maps) was that which obtained the best performance, while 

comparing it with the other methods we use. For MaxEnt, this treatment reached the 

higher values in comparison to the others, with D values around 0.6 and 0.7. For SVM, 

the SEP-PA treatment only showed prediction improvement when compared to the 

CLIMA treatment, while all other treatments achieved similar results to SEP-PA. For 

Bioclim, SEP-PA was only better than the STK-SUIT treatment (Fig. 2-3A and Tab. 2-

2A). On the other hand, our ANOVA results show that the effect of treatments on the 

predicted area of the bee depends on the modeling method used. In general, the SEP-PA 

treatment showed good performance in both MaxEnt and SVM (Fig. 2-3A), while 

Bioclim overpredicted the bee’s distribution in all treatments . Thus, we selected the 

SEP-PA treatment to analyze the future predictions of L. huberi due to its performance 

in the MaxEnt method, as well for considering that biotic information may make the 

overall model more realistic. 

Table 2-2 Results of the Rpeated Measures ANOVA performed with treatments in our models. 

(A) The results considering the values of D for Lithurgus huberi’s predictions; (B) The results 

considering Lithurgus huberi’s range size. XP: modelling treatment 

 Variables Sum of 
Squares 

Degrees of 
freedom 

Mean 
squares F value Adjusted P 

A) 
treatment 0.119 4 0.030 1.60 < 0.185 
method 3.435 2 1.718 118.60   < 0.000* 
method vs. xp 0.122 8 0.015 1.10 < 0.403 

B) 
treatment 0.126 4 0.032 6.01   < 0.001* 
method 0.954 2 0.477 89.55   < 0.000* 
method vs. xp 0.281 8 0.035 6.59   < 0.000* 
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Figure 2-3 Results of the modeling experiment #1. (A) evaluation of D values for each 

treatment by predictive method, which we used to support our choice for the SEP-PA 

experiment; (B) Proportion of occupied extent of Lithurgus huberi’s potential distributions 

according to each predictive method in proportion to the study area. Central values correspond 

to the means, while the bars correspond to the 95% confidence interval. Different letters are 

statistically different. The SEP-PA treatment is highlighted in both figures.  

 

 
A
) 

B
) 
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We can infer an inversely proportional relationship between D results and the 

size of the distribution. We observed that high values of D may incur in a low predicted 

distribution area. The Bioclim method, for example, predicted larger areas for L. huberi 

than both MaxEnt and SVM methods, which reached higher values of D on the other 

hand (Fig. 2-3A and 2-3B).  

 

Figure 2-4 Thinned occurrences for Lithurgus huberi (blue dots) and ensembles of distribution 

range of its predictions for the current scenario in all treatments. The ensemble distributions 

were produced using all three methods according to each treatment in Modeling Experiment 

#1: CLIMA, abiotic variables only; SEP-PA, abiotic variables plus maps of presence and 

absence of the associated plant species; SEP-SUIT, abiotic variables plus plant species 

suitability; STK-PA, abiotic variables plus summed presence and absence maps of the plants; 

STK-SUIT, average of the suitability of the associated plants. The color scale corresponds to 

the suitability values for the three species in each of the current and future climate scenarios 

considered. 

 
In general, the current distribution of L. huberi was mainly predicted to occur in 

the central-west, northeast and southeastern Brazilian regions (Fig. 2-4), as the predicted 

CLIMA SEP-PA 
PA 

SEP SUIT STK PA STK SUIT 

OCCURRENCES 
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distribution of its host plant species (Figs. S. 2-1 to 2-7). As expected, due to the 

geographical patterns of predictions for the plant species, L. huberi was not expected to 

occur in central areas of the Amazon. The only distribution that showed different results 

was SEP-PA, which had greater predicted area for L. huberi than that observed among 

the other treatments in modelling experiment #1.  

Compared with the current prediction of L. huberi, the results for Bioclim show 

a marked reduction of the predicted area for the AOGCMs IPSL-CMSA-LR, and 

MIROC-ESM AOGCMs in all RCP scenarios we considered (Fig. 2-5). Compared to the 

current scenario, there was no significant change in the number of predicted cells among 

the other methods, SVM and MaxEnt in all three AOGCMs. 

 

Figure 2-5 Size of the Lithurgus huberi’s distribution considering the predictive methods, all 

AOGCMs, and future scenarios (RCPs 2.6 to 8.5). The range size is represented by the number 

of grid cells occupied in each predictive method (x 1000) per scenario. Central values 

correspond to the means and the bars correspond to the 95% confidence interval. ○, ■, •  

represent, respectively, the methods: Bioclim, MaxEnt, SVM. The numbering “.1”, “.2”, and 

“.3” represent, respectively, the following AOGCMs: CCSM4, IPSL-CMSA-LR and MIROC-

ESM. 
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Figure 2-6 Final distribution of Lithurgus huberi bee for current and future scenarios (RCPs 

2.6 to 8.5). The maps for the future scenarios were generated by the weighted mean of all three 

methods (Bioclim, MaxEnt, SVM) in all AOGCMs. The color scale corresponds to the values 

of suitability for the three species in each of the current and future climatic scenarios. RCP: 

Representative Carbon Pathway. 

In the final ensembles of L. huberi in the current (SEP-PA) and in the four future 

scenarios (RCPs 2.6 to 8.5), we observed a marked reduction of suitability in all future 

scenarios in relation to the present, especially in the center-west region of Brazil (Fig. 

2-6). The loss of future suitability is concentrated in areas of the Brazilian Savannas 

(central South America). If the future predictions for L. huberi prove to be right, climate 

change should isolate its populations from southern and northern South America. In 

addition, central areas in the distribution in the current scenario will lose suitability in 

the future, especially RCP8.5, both for L. huberi as well for all seven associated plants 

(Figs. S. 2-1 to 2-7).  

CURRENT RCP 2.6 RCP 4.5 

RCP 8.5 RCP 6.0 
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2.4 DISCUSSION 

In this study, we attempt to integrate biotic interactions in ENMs procedures to 

predict the future potential distribution of L. huberi in South America. Then, we 

evaluated how the inclusion of the biotic component would affect the distribution of the 

species bee in the future in interface of the plant species’ interactions. Integrating biotic 

components (associated species), as additional predictor variables, has been the most 

used approach among the studies choosing this modelling strategy for integrating biotic 

interactions (Anderson, 2016). Our results show that the inclusion of the biotic 

component composed of the plant species where the bee searches for food improved our 

model. In addition, we observed that the potential distribution of L. huberi tends to 

decrease in the future, regardless of the RCP considered, but especially in RCP8.5, the 

most pessimistic scenario. 

Bees represent a significant subset of the pollinators, accounting for 35% of 

global food production (Klatt et al., 2013; Klein et al., 2003; Kremen et al., 2007).  

Negative impacts of climate change on the pollinator-plant relationship may produce 

biological effects, such as: 1) competition for floral resources or nesting sites (Donovan, 

1983; Rasmussen et al., 2012); 2) damaging buildings (Araújo and Rozenfeld, 2014; 

Rust et al., 2004); 3) the reduction in the foraging period (Settele et al., 2016); 4) 

alteration of pollination networks (Groom et al., 2014; Rasmussen et al., 2012); 5) 

transmission of pathogens or parasites (Goulson, 2003). In addition, the pollination 

services provided by several bee communities are well known (Garibaldi et al., 2013; 

Kremen et al., 2007; Winfree et al., 2007) and interactions between native and non-

native bees until they are beneficial in some cases (Greenleaf and Kremen, 2006; Silva 

et al., 2017).  Moreover, exotic bees can have positive impacts through pollination 

(Groom et al., 2014), increasing resilience to human disturbances (Downing and Liu, 

2012) and/or climate change (Martins et al., 2015; Silva et al., 2018). Nevertheless, for 

very aggressive species such as Apis melífera L., 1758 (Apidae: Apinae: Meliponini), 

recent research has shown that native species may be negatively affected, since A. 

melífera is able to monopolize and reduce the amount of food resources available to 

other species (Cane and Tepedino, 2017; Santos et al., 2012). Despite these efforts, it is 

still unclear the role of climate change in the behavior of exotic bee species and future 

studies are needed to assess the invading potential of different species of bees reported 

as invasive in the world (Russo, 2016). 
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Usually, the spatial distribution of a species is determined by the intersection of 

the biotic, abiotic and migratory elements available to the species, according to the BAM 

diagram (Soberón, 2007; Soberón and Peterson, 2005). However, biotic interactions are 

generally not considered in macroeconomic analyzes as effective variables in 

determining the distribution of the modeled species because, presumably, they exert only 

local effects. This is in contrast to the effects of abiotic variables, which may be facto rs 

responsible for determining the spatial distribution at broader scales (Giannini et al., 

2013b; Hortal et al., 2010; Soberón et al., 2007). Nevertheless, the omission of 

interactions in the ENMs does not necessarily imply that they do not play a role in the 

determination of wide-scale distribution (Anderson, 2016; Hortal et al., 2010; Meier et 

al., 2010). Given these concerns and criticisms of the real effects of biotic variables at 

large scales (Guisan and Rahbek, 2011; Wisz et al., 2013), several studies have improved 

the ability to predict species distribution after inclusion of the biotic component, 

considering different types of biotic variables and different biological scenarios in their 

modeling procedures (Anderson, 2016; Araújo and Luoto, 2007; Godoy et al., 2018; 

Meier et al., 2010; Staniczenko et al., 2017; Wisz et al., 2013). Our results indicate that 

the biotic variables we used (e.g. the predicted suitability of the associated plant species) 

are not completely independent from the abiotic variables considered in our modeling 

procedures, since they partially improve the ability in all predictive methods to 

determine the modeled distribution of L. huberi. Nonetheless, for one method in the 

selected treatment, it showed some improvement in relation to the other methods and 

treatments 

In our case, given the dependence of insects and plants by climatic conditions  

(Chown and Terblanche, 2006; Hutchinson, 1957), such variables would be the main 

factors responsible for both the known and modeled distributions of L. huberi and its 

associated species. In addition, since the bee seems to be oligoletic to the pollen of these 

plant species, the observed occurrences we obtained may be a result of the intersection 

of the biotic and abiotic components regulating their niches (Soberón, 2007; Soberón 

and Peterson, 2005). Thus, although the use of the of the associated plant species’ 

predictions to determine the potential distribution of L. huberi may produce a more 

concise distribution, perhaps this does not necessarily improve the predictive ability of 

the predictive methods. At least for L. huberi and its host plant species, our results are 
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in agreement with the widely held theory that climate is one of the key determinants of 

species distribution over a wide scale (Hortal et al., 2010; Pearson and Dawson, 2003).  

Models trained using both native and exotic occurrences for the focus species 

may produce better predictions of future expansion, in areas not yet occupied by the 

more accurate exotic species (Broennimann and Guisan, 2008). Still, this may not be the 

best strategy, considering that exotic species may undergo niche shifting in new areas, 

tending to occupy regions that are climatically different from those where they occur 

naturally (Blois et al., 2013; Broennimann et al., 2007). Studies following this strategy 

have found conflicting results, both with observation of niche shifting (Atwater et al., 

2018) and niche conservation (Petitpierre et al., 2012), in particular for plant species. In 

contrast, invasive insects display rates of niche expansion higher than other taxonomic 

groups (Hill et al., 2017), with the exception perhaps of reptiles (Li et al., 2014). 

Therefore, the use of different sets of taxonomic groups, altogether with the biotic 

variables, may be a better strategy. Considering that there are an expressive number of 

species of exotic bees already established (Russo, 2016), it would be crucial to test what 

is happening to the exotic bees species. 

Considering our results for the future, our predictions showed that L. huberi will 

retract its distribution range in all four RCPs, although such retraction was most marked 

in RCP8.5. In other studies, exotic species have shown to be resilient to pessimistic 

climate change scenarios (Filz and Schmitt, 2015; Kerr et al., 2015; Schweiger et al., 

2012, 2010; Silva et al., 2018). According to our models of range distribution, L. 

huberi’s suitable area in the current scenario very concentrated in the South America 

center-west regions, will be greatly reduced and will move southwards (especially 

southeastward. Many studies have shown the vulnerability of species to the limits of 

their distributions, especially in relation to climate change (Parmesan, 2006). Since, 

climate is the main factor determining the limits of species distributions , It may reduce 

the persistence of marginal populations (Hoffmann and Blows, 1994), thus, limiting the 

ability of this bee species to adapt to potential climate change scenarios. 

The use of additional floral resources not considered in our biotic predictors could 

have significant effects in determining the distribution of L. huberi. Thus, given their 

alleged relationships with Malvaceae species in their original  distribution, additional 

studies of the natural and ecological history of this species, throughout its South 

American occurrence range, may be required to determine whether this bee also depends 
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on such pollen sources in its invaded area. In the future, if individuals of L. huberi were 

observed collecting pollen from other plant species not considered here, it would be 

ideal to re-evaluate the methods we used, also including these new biotic interactions as 

biotic variables determining their distribution in South America. Additionally, the use 

of plant species used by L. huberi as a nesting substrate, e.g. Euphorbia carinatum, 

Euphorbia pulcherrima (Euphorbiaceae), Spathodea campanulata (Bignoniaceae) and 

Eucalyptus spp. (Myrtaceae; Camillo et al., 1994) could be also considered. Specifically, 

Eucalyptus spp. is nowadays widely planted in Brazil to obtain wood and coal, and may 

be particularly important for the distribution of L. huberi (Silva et al., 2014).  

In this study, we modeled the distribution of the seven host plants, recorded in  

the literature as associated with L. huberi and used them as biotic components to 

determine its potential distribution in South America, both in the current and in the 

future climatic scenarios. Although the inclusion of model host distributions has 

partially improved the ability of predictive methods to predict L. huberi distribution, 

similar studies with other host plants, as well as with other biological contexts, should 

be considered so biotic variables could be properly evaluated in ENMs procedures. In 

general, we believe that new methodologies for the inclusion of biotic variables are 

essential for the advancement and improvement of ENM in the future, further enhancing 

their use in making practical conservation decisions.  
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2.7 SUPPLEMENTARY MATERIALS 

 

Figure S. 2-1 Thinned occurrences for Ipomoea asarifolia (red dots) and ensembles of 

distribution range of its predictions for the current and future scenarios (RCPs 2.6 to 8.5). The 

maps for the future scenarios were generated by the weighted mean of all three methods 

(Bioclim, MaxEnt, SVM) in all AOGCMs. The color scale corresponds to the values of 

suitability for the three species in each of the current and future climatic scenarios. RCP: 

Representative Carbon Pathway.  
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Figure S. 2-2 Thinned occurrences Ipomoea bahiensis occurrences (red dots) and ensembles of 

distribution range of its predictions for the current and future scenarios (RCPs 2.6 to 8.5). The 

maps for the future scenarios were generated by the weighted mean of all three methods 

(Bioclim, MaxEnt, SVM) in all AOGCMs. The color scale corresponds to the values of 

suitability for the three species in each of the current and future climatic scenarios. RCP: 

Representative Carbon Pathway.   
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Figure S. 2-3 Thinned occurrences Ipomoea cairica occurrences (red dots) and ensembles of 

distribution range of its predictions for the current and future scenarios (RCPs 2.6 to 8.5). The 

maps for the future scenarios were generated by the weighted mean of all three methods 

(Bioclim, MaxEnt, SVM) in all AOGCMs. The color scale corresponds to the values of 

suitability for the three species in each of the current and future climatic scenarios. RCP: 

Representative Carbon Pathway.  
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Figure S. 2-4 Thinned occurrences Ipomoea indica occurrences (red dots) and ensembles of 

distribution range of its predictions for the current and future scenarios (RCPs 2.6 to 8.5). The 

maps for the future scenarios were generated by the weighted mean of all three methods 

(Bioclim, MaxEnt, SVM) in all AOGCMs. The color scale corresponds to the values of 

suitability for the three species in each of the current and future climatic scenarios. RCP: 

Representative Carbon Pathway.   
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Figure S. 2-5 Thinned occurrences Ipomoea nil occurrences (red dots) and ensembles of 

distribution range of its predictions for the current and future scenarios (RCPs 2.6 to 8.5). The 

maps for the future scenarios were generated by the weighted mean of all three methods 

(Bioclim, MaxEnt, SVM) in all AOGCMs. The color scale corresponds to the values of 

suitability for the three species in each of the current and future climatic scenarios. RCP: 

Representative Carbon Pathway.  
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Figure S. 2-6 Thinned occurrences Ipomoea purpurea  occurrences (red dots) and ensembles 

of distribution range of its predictions for the current and future scenarios (RCPs 2.6 to 8.5). 

The maps for the future scenarios were generated by the weighted mean of all three methods 

(Bioclim, MaxEnt, SVM) in all AOGCMs. The color scale corresponds to the values of 

suitability for the three species in each of the current and future climatic scenarios. RCP: 

Representative Carbon Pathway.  
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Figure S. 2-7 Thinned occurrences Merremia aegyptia occurrences (red dots) and ensembles 

of distribution range of its predictions for the current and future scenarios (RCPs 2.6 to 8.5). 

The maps for the future scenarios were generated by the weighted mean of all three methods 

(Bioclim, MaxEnt, SVM) in all AOGCMs. The color scale corresponds to the values of 

suitability for the three species in each of the current and future climatic scenarios. RCP: 

Representative Carbon Pathway.  
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CAPÍTULO 3 

3. O IMPACTO DAS MUDANÇAS CLIMÁTICAS NA DISTRIBUIÇÃO 
DE ABELHAS NATIVAS DA REGIÃO NEOTROPICAL 
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CLIMATE CHANGE WILL CONTRACT THE DISTRIBUTION RANGE OF 

NEOTROPICAL CARPENTER BEES 

 

ABSTRACT 

Native bees are important providers of pollination services, directly impacting global 

food production. There is cumulative evidence of their decline. Climate change is one 

of the possible drivers of the decline of these pollinators. However, there is a of lack of 

studies the effects of climate change in future distribution of native bees from the genus 

Xylocopa Latreile, 1802 (Apidae: Xylocopinae: Xylocopini) and its occupation of 

protected areas (PA). Xylocopa are the main pollinators from several plant families, 

among them, one of great commercial interest, the passion fruit (Passiflora, 

Passifloraceae). Our main objective here was to predict areas of present and future 

potential distribution of three species: Xylocopa abbreviata Hurd & Moure (1963), 

Xylocopa Truxali Hurd & Moure (1963) and Xylocopa vestita Hurd & Moure (1963). 

We also estimated the proportion of the predicted area of each species occurring within 

PAs, comparing the current climate scenario with four future scenarios. We used all 

climate models of the four representative concentration pathways (RCP). To reduce 

uncertainty in our results, we selected three models of each RCP by means of cluster 

analysis. Our evaluation index was a statistical test based on the True Presence Rate 

estimated by each method. Our results show that these bees will suffer reduction in their 

potential distribution range due to global climate change, particularly in areas of central-

west Brazil. Since we also found significant reduction of suitable PAs, conservation 

politics should be considered for these species. 

 
 
Keywords: Xylocopini, Pollinators, Protected Areas, Ecological Services.   
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3.1  INTRODUCTION 

The impacts of climate change on ecological systems are expected to be 

significant and to  produce biological changes in (1) phenological relationships between 

species (Ovalle-Rivera et al., 2015; Schweiger et al., 2012), (2) interspecific ecological 

interactions (Araújo and Rozenfeld, 2014; Tylianakis and Binzer, 2014) and (3) the 

geographic distributions of species (Parmesan, 2006). Since climate is the primary 

control of species distribution and ecological processes, climate change can lead to the 

breakdown of interspecific associations among them (Pecl et al., 2017). The decline of 

pollinators around the world has become a major conservation concern (Ghazoul, 2005; 

Hegland et al., 2009; Potts et al., 2010; Steffan-Dewenter et al., 2005; Winfree et al., 

2009). Thus, understanding how they can respond to future climate change may show us 

how ecosystem services will be affected by this climate changes, with potential 

consequences for economic activity involved in pollination (Aizen and Harder, 2009), 

ecosystems dynamics (Potts et al., 2010), as well for human well-being (Potts et al., 

2016). 

Bees correspond to a very important group of pollinators with economic 

relevance (Costanza et al., 2014; Kremen et al., 2007). To understand and anticipate 

potential species substitutions in species communities, changes in their distributions 

have been studied in detail (Fitzpatrick et al., 2007; Giannini et al., 2012; Memmott et 

al., 2004). Agricultural intensification and intense pesticide use were claimed to be the 

main causes for the decline of bees in Europe and North America (e.g, Fitzpatrick et al., 

2007; Goulson, 2003). Otherwise, studies in the Neotropical region suggest that the main 

drivers of pollinator decline are deforestation (Nemésio et al., 2016) associated with 

global climate change (Giannini et al., 2012; Martins et al., 2015). 

Ecological Niche Modeling (ENM; also known as Potential Distribution Models 

- but see Peterson and Soberón, 2012) constitute a common approach in the literature 

both to assess the establishment of exotic species (Jiménez-Valverde et al., 2011), as 

well to assess the impact of climate change on its distribution (Araújo and Peterson, 

2012). Other studies have tried to predict how various species of bees will respond to 

future scenarios of climate change. Ten species of Brazilian bees under different 

scenarios of future warming showed range contractions in face of the potential effects 

of climate change (Giannini et al. 2012). Future distributions were also modeled for the  

rare bee species Euglossa marianae Nemésio (2011), which occupies highly fragmented 
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habitats in eastern Brazil (Nemésio et al., 2016). In another study, four Xylocopa species 

along with one of their main floral features, passion fruit, showed a change in their 

predicted distribution, with greater effects on more tropical habitats  (Giannini et al., 

2013b). 

The genera Xylocopa Latreile, 1802 (Apidae: Xylocopinae: Xylocopini) 

encompasses about 700 species widely distributed between New and Old worlds  (Hurd 

and Moure, 1963; Michener, 2007), with ~50 Brazilian species described (Hurd, 1978). 

This genus has the highest diversity of species in the tropical and subtropical regions 

with 31 subgenera described, with 11 of the New World and 19 in the Old World 

(Michener, 2007). Xylocopa bees are also popularly known as “carpenter bees” due to 

their habit of building nests in dead trees’ thin branches and/or hollow stems (Hurd and 

Moure, 1963). According to climate conditions, carpenter bees could be uni-, bi- or 

polivoltine (Watmough, 1974). The females of Xylocopa bees dehydrate the nectar they 

obtain from flowers, increasing the concentration of sugar, and consequently, improving 

the nutrition to their nestlings, allowing them to occupy a territory for a longer time 

(Wittmann and Scholz, 1989). Information on plant relationships indicates that Xylocopa 

species are poliletic (Gerling et al., 1983; Hurd, 1978). Important sources of pollen for 

Xylocopas are plants with flowers that have porous anthers such as passion fruit 

(Passiflora, Passifloraceae), Solanum (Solanaceae), Cassia, Senna, and Chamaecrista 

(Caesalpiniaceae, Melastomataceae), whose pollen grains are collected by vibration and 

sonication (Buchmann, 1983; Van Der Pul, 1954). 

The carpenter bees are the main pollinators of plants of great commercial interest, 

among them, one of strong dependency of these pollinators, regards the pollination of 

the passion fruit (Passiflora, Passifloraceae) (Garcia and Hoc, 1997; Roubik, 1995; 

Sazima and Sazima, 1989; Souza et al., 2004). The pollinator species richness 

(Yamamoto et al., 2012), abundance (Camillo, 2003) and frequency of visitation 

(Benevides et al., 2009) have been proved to increase the fruit set in passion fruit 

orchards. Although passion fruit flowers may be manually pollinated, natural pollination 

is cost free and increases the quality and quantity of fruits , providing higher income and 

giving value to this commodity (Junqueira and Augusto, 2017). Thus, the conservation 

of passion fruit natural pollinator should be encouraged.  

Considering this context, our main objective was to evaluate the effects of global 

climate change on the future distribution of three species of native carpenter bees of the 
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Brazilian Cerrado, Xylocopa abbreviata Hurd & Moure (1963), Xylocopa Truxali Hurd 

& Moure (1963) e Xylocopa vestita Hurd & Moure (1963). We used several methods of 

ENM to predict areas of potential occurrence of these species. Finally, we also estimated 

the proportion of the predicted area of each species occurring within environmental 

protection units, comparing the current climate scenario with four scenarios of future 

atmospheric carbon emissions (RCPs 2.6 to 8.5), from the most optimistic to the most 

pessimistic ones, for the year 2070. 

3.2 METHODS 
3.2.1 Occurrence data 

We obtained the geographic distribution data for the three bee species in three 

ways: 1) in the entomological collections of the Universidade Federal do Paraná and 

the Universidade  Federal de Minas Gerais; 2) field sampling; 3) literature review (Hurd 

and Moure, 1963; Zanella and Silva, 2010). The total database consisted of 36 

occurrences of X. abbreviata, 15 occurrences of X. truxali as well as 9 occurrences of 

X. vestita (Fig 3-1). 

Figure 3-1 Total occurrence data for the modeled bees Xylocopa abbreviata, Xylocopa truxali, 

and Xylocopa vestita, including all sources composing the database. The names of the Brazilian 

states cited along the text are shown in the figure. 
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3.2.2 Selecting environmental variables and processing occurrences 

We encoded all the processes of preparation and selection of variables, processing 

of occurrences and operationalization of the predictive methods, in open source 

language R (Development Core Team, 2018). We delimited the extension of the grid 

cells of the predictor variables to South America. All variables were in the resolution of 

2.5 arcmin (cells with ∼ 4 km2 on the equator). We collected all 19 climatic variables 

(abiotic component), both for current period (interpolations of observed data, 

representative of 1960-1990) and for each of the 11 Atmospheric Oceanic Global 

Circulation Models (AGOCMs hereon) common at all four IPCC’s Representative 

Concentration Pathways (RCP hereon) (RCP2.6, RCP4.5, RCP6.0 e RCP8.5), with 

projections for 2070 (average interpolations for 2061-2080). Such variables are freely 

available in the online database WorldClim  (www.worldclim.org; Hijmans et al., 2005). 

Since modelling with all climatic variables may produce overfitted models (Jiménez-

Valverde et al., 2011), we selected our predictor variables using an Exploratory Factor 

Analysis (EFA hereon) with VARIMAX axis rotation type.  

The EFA is a method commonly used in the social sciences to identify the factors 

(structure or axes) that highlights the correlation of each raw variable with each one of 

these factors (Distefano et al., 2009; Lawley and Maxwell, 1962). (Distefano et al., 

2009; Lawley and Maxwell, 1962). We defined the number of factors in the EFA 

graphically, by performing a scree test (Cattell, 1966) and analyzing the resulting plot 

generated via the function fa.parallel from the psych package (Revelle, 2018). This test 

showed us that only five factors, that reached observed eigenvalues higher than a random 

expectation, were needed as environmental predictors for South America . Each one of 

these factors provide a specific loading value, ranging from -1 to 1, for each variable, 

where 1 represents the maximum correlation value to the factor (Cattell, 1966; Distefano 

et al., 2009). Starting from our initial set of 19 abiotic variables for the present scenario, 

we selected the variables with the highest loading value to represent each one of the five 

EFA axes (Tab. 3-1). Therefore, our set of abiotic components was composed by: Mean 

Diurnal Range (Bio02); Isothermality (Bio03); Mean Temperature of Warmest Quarter 

(Bio10); Precipitation of Driest Month (Bio14); Precipitation of Wettest Quarter 

(Bio16).   

http://www.worldclim.org/
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Table 3-1 Results of the Exploratory Factor Analysis, with VARIMAX axis rotation, among 

the 19 WorldClim variables. Bold values represent loading greater than 0.8. Variables in bold 

represent those that we maintained in our study. 

  FACTORS 

VARIABLES COD. 1 2 3 4 5 

Annual Mean Temperature bio01 0.914 0.042 0.315 0.223 -0.103 

Mean Diurnal Range bio02 -0.121 -0.358 -0.238 -0.194 0.865 

Isothermality bio03 0.312 0.109 0.842 0.278 -0.008 

Temperature Seasonality bio04 -0.294 -0.014 -0.856 -0.376 0.177 

Max Temperature of Warmest Month bio05 0.982 -0.040 -0.058 0.115 0.101 

Min Temperature of Coldest Month bio06 0.782 0.124 0.451 0.279 -0.299 

Temperature Annual Range bio07 -0.223 -0.220 -0.720 -0.302 0.536 

Mean Temperature of Wettest Quarter bio08 0.920 0.045 0.193 0.141 0.024 

Mean Temperature of Driest Quarter bio09 0.777 0.039 0.420 0.275 -0.247 

Mean Temperature of Warmest Quarter bio10 0.985 0.051 0.046 0.130 -0.071 

Mean Temperature of Coldest Quarter bio11 0.821 0.041 0.474 0.281 -0.137 

Annual Precipitation bio12 0.280 0.527 0.303 0.720 -0.129 

Precipitation of Wettest Month bio13 0.351 0.190 0.342 0.835 -0.127 

Precipitation of Driest Month bio14 -0.010 0.956 0.142 0.209 -0.106 

Precipitation Seasonality bio15 0.039 -0.686 0.222 0.032 0.282 

Precipitation of Wettest Quarter bio16 0.349 0.207 0.340 0.837 -0.119 

Precipitation of Driest Quarter bio17 0.009 0.946 0.150 0.250 -0.120 

Precipitation of Warmest Quarter bio18 0.136 0.548 0.181 0.415 0.138 

Precipitation of Coldest Quarter bio19 0.153 0.430 0.185 0.551 -0.297 

Usually, the climatic variables derived for future scenarios and widely used in 

ENMs studies are generated by the production of several AOGCMs by independent 

research organizations. Broadly speaking, these models are mathematical 

representations of physical processes operating in the atmosphere, ocean, cryosphere, 
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and on the earth's surface (Stocker et al., 2013). Each AOGCM has its peculiarities, 

since each one uses a unique set of equations to simulate the climatic dynamics. Thus, 

differences in the initial configuration and in the algorithms that generate this model 

inevitably lead to different environmental predictions (McGuffie and Henderson-Sellers, 

2014). In contrast to the current scenario, where we modeled the species with only one 

AOGCM available in Worldclim, for the future scenarios, we used several AOGCMs 

available for the four RCPs available in WorldClim. To reduce the repeatability between 

models that are similar and that may increase the uncertainty of the predictions (Varela 

et al., 2015), we used a hierarchical clustering analysis (HCA hereon) to select the 

appropriate AOGCMs along all four RCPs. 

To maintain the models’ comparability, we initially selected only the 11 

AOGCMs common to the four RCPs. Then, we built four initial arrays, one for each 

RCP, with the 19 variables of the 11 AOGCMs, using the abind function from the 

package abind (Plate and Heiberger, 2016). We classified the models into groups using 

the correlation between their predictions. Finally, we used the hcluster function from 

the package amap (Lucas, 2018) to proceed with our HCA, ordering the similarities 

among the predictions of the models based on the correlation between the predictions in 

the AOGCMs among the same variables. We set the maximum number of clusters to 

four. Finally, we analyzed all AOGCM from the four resulting dendrograms following 

the criteria of 1) be in only one of the four groups of the individual cluster and 2) be 

present in all four dendrograms referring to each RCP. Hence, we selected the AOGCMs 

CCSM4, IPSL-CMSA-LR and MIROC-ESM in all RCPs as our future variable sets, to 

represent the future distribution of our modeled species (Fig. 3-2). 

To avoid potential effects of spatial autocorrelation between the occurrences of 

the eight species (one bee and seven host plants) (Fig. 3-3A), we used the spThin 

package (Aiello-Lammens et al., 2015) to eliminate occurrences that were very close to 

each other(Fig. 3-3B). We only kept the occurrences that were at a minimum distance 

of 20 km from each. After the geographic space filtering process, the total of spatially 

unique occurrences remaining for each species was 27 occurrences for X. abbreviata, 8 

occurrences for X. truxali, and 8 occurrences for X. vestita. 

We divided the occurrences of all species into 10 training-test subsets, where in 

each of these subsets, 70% of the occurrence records randomly composed the replication 

training groups, while the remaining 30% were assigned to the testing subsets (Fig 3-3 
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C). We used the same subsets in the same order in all our modelling runs for all climatic 

scenarios considered here. 

Figure 3-2 Hierarchical clustering of the 11 AOGCMs according to the correlation between all 

19 climatic variables for the future scenarios in A) RCP 2.6, B) RCP 4.5, C) RCP 6.0, and D) 

RCP 8.5. ▼ indicates the selected AOGCMs in all scenarios: CCSM4, IPSL-CMSA-LR and 

MIROC-ESM. RCP: Representative Carbon Pathway. 

3.2.3 Modelling procedures and evaluation 

Given the predictive methods’ individual bias and the uncertainty nature of the 

ENM, different predictive methods may result in different patterns of distribution of the 

modeled species (Barry and Elith, 2006; Rocchini et al., 2011). Thus, we predicted the 

three carpenter bees potential distribution through four different predictive methods (Fig 

3-3 D): 1) BIOCLIM (Booth et al., 2014; Nix, 1986), implemented via bioclim function 

from dismo package (Hijmans et al., 2017); 2) Maximum Entropy (MaxEnt; Phillips et 

al., 2006; Phillips and Dudík, 2008), using the MaxEnt function from dismo package, 

loaded in the MaxEnt program installation; 3) Support Vector Machines (SVM; 

Schölkopf et al., 2001; Tax and Duin, 2004), modeled by the ksvm function from kernlab 
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package (Karatzoglou et al., 2004); 4) Gower distance (Gower, 1971), implemented via 

the domain function from the dismo package. 

 
Figure 3-3 Summary of the modeling procedures. (A) Occurrences datasets. (B) 

Filtering of occurrences in the geographic space. (C) Partitioning occurrences in test 

training subsets. (D) Models parameterization and general modeling procedures. (E) 

Predictions evaluation. (F) Ensembles of all predictions produced by all methods by 

scenario. 

 

One way of evaluating the predictions, commonly used by ecologists, is through 

metrics associated with pseudo-absences, where absence data are generated to fill the 

lack of knowledge regarding real absences. In this type of evaluation, after the 

determination of the predictions by means of some threshold that makes the balance 

between the errors of omission and commission (e.g. the ROC threshold;  Liu et al., 

2011, 2005),  the predictions are evaluated by a metric compatible with pseudo-absences 

(e.g. true skill statistic; TSS; Allouche et al., 2006). This type of evaluation may 

represent conceptually flawed analysis given the unreal nature of pseudo-absence data 

(Golicher et al., 2012; Hirzel et al., 2006; Lobo, 2016; VanDerWal et al., 2009). 

Moreover, different scales applied in the creation of distribution maps using pseudo-

absences may generate divergent final results depending on the proximity to the 

occurrences of the known species (Lobo and Tognelli, 2011; VanDerWal et al., 2009). 
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Thus, to avoid these potential setbacks, we grounded our modelling procedures in using 

presence only methods. The statistical test we adopted here, D, was adapted from 

Pearson et al., 2007 , defined simply as 

                                           𝐷 =  𝑇𝑃𝑅 ∗ (1 − 𝑝𝑖)                      

Where, TPR refers to the True Presence Rate (TPR), and pi refers to the proportion of 

the area predicted as presence for the species.  

Here, we only changed the logic of weighting success binarily (hit/miss), 

described by Pearson et al. (2007), for a rate of success in percentage, i.e. ranging from 

0 to 1. Models that predict the entire area of study as the presence of the species are 

trivial, as they also predict all occurrence points as true (Golicher et al., 2012; Pearson 

et al., 2007). This metric was used as the weight of the weighted average used for 

ensemble the predictions from all predictive methods  (Fig. 3-3 E). Thus, low values of 

D indicate models of low predictive ability and assume a negligible weight in the 

ensemble, since they are reflected directly in the final weighted suitabili ty. Otherwise, 

models with high predictive ability would be those that predict a relatively small area as 

the presence of the species and, even so, they predict the known occurrences of the target 

species. These models with higher D values contribute with greater importance for the 

final ensemble (Hirzel et al., 2006; Pearson et al., 2007; Peterson et al., 2011; 

Shcheglovitova and Anderson, 2013).  

We ensemble the 10 prediction replicates, both for the current as well for all four 

future scenarios, into a single map for each scenario, via a weighted average with all 

predictions made from each predictive method. We repeated this process in all modeling 

experiments for X. abreviata, X. truxali, and X. vestita which were modeled in the all 

climate scenarios modeled (one for the current scenario and four RCPs for the future 

scenarios) (Fig. 3-3 F).  

Considering all ensembles of the four future scenarios, we used a consensus 

method to produce the final future distribution of all the three species. We calculated 

the no-omission threshold from the ensemble of the current scenario. Then, we delimited 

each of the four future models with values above such threshold to produce a final mean 

distribution of the species for the future. We used the final sets of each climatic scenario 

(present and future) and the no-omission threshold to assess the amount of predicted 

proportion of the distribution range of the three carpenter bees that is covered by 

protected areas. To do this, we obtained shapefiles of protected areas  (PAs hereon) in 
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South America from Protected Planet (https://www.protectedplanet.net/), the online 

Interface of the World Database on Protected Areas (WDPA). To carry out this analysis, 

we consider only the strict reserves, those of categories I to IV of the IUCN, in both 

shapefiles. The shapefiles we obtained were rasterized, considering the grid cell sizes 

we used in our modelling procedures, in all climatic scenarios used. All R scripts written 

for our modelling procedures are available at https://github.com/miltonmta/xylocopas 

3.3 RESULTS 

The predicted distributions of the three modeled species showed good D values, 

considering all methods (Tab 3-2). Overall, in the current scenario, the Brazilian central-

west and western regions, were always predicted to be suitable for the occurrence of all 

these bees, but there were suitable patches predicted in western Bolivia for X. abbreviata 

and X. truxali. The resulting distribution of the three species for the future scenarios 

showed a clear trend, despite the intrinsic differences of the methods considered 

(AOGCMS and the emission scenarios): the appropriate climatic conditions observed in 

the present will retreat to the South, in all climatic scenarios (Fig. 3-4). It is also possible 

to note a significant loss of suitable areas in the central region of South America, for the 

three species considered here. The most restricted distribution was the consensus of RCP 

8.5 for three bee species. (Fig.3-4). According to these combinations, the three species 

may occupy Brazilian areas ranging from Southward Minas Gerais and Northeastward 

of São Paulo. To a lesser extent, X. abbreviata and X. truxali may occupy isolated 

regions in the central-western region of Bolivia (Fig. 3-5). 

Table 3-2 Results obtained for each method by predicting the current potential distribution of 

Xylocopa abbreviata, Xylocopa vestita and Xylocopa truxali, modeled with WorldClim 

interpolations of observed data, representative of 1960-1990. 

METHOD D (average ± Standard Deviation) 
 X. abbreviata X. vestita X. truxali 
Bioclim 0.489 ± 0.426 0.397 ± 0.314 0.296 ± 0.345 

MaxEnt 0.797 ± 0.085 0.448 ± 0.249 0.574 ± 0.184 

SVM 0.838 ± 0.097 0.582 ± 0.200 0.609 ± 0.266 

Gower 0.702 ± 0.102 0.683 ± 0.249 0.727 ± 0.347 

All Methods 0.707 ± 0.258 0.552 ± 0.324 0.552 ± 0.324 

https://www.protectedplanet.net/
https://github.com/miltonmta/xylocopas
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Figure 3-4 Occurrences and distribution predictions for Xylocopa abbreviata, Xylocopa truxali, and Xylocopa vestita. The color scale corresponds 

to the suitability values for the three species in each of the current and future climate scenarios (RCPs 2.6 to 8.5) considered. The maps for the 

current scenario were generated by the weighted mean of all predictive methods. The maps for the for the future scenarios were generated by the 

weighted mean of all four predictive methods (Bioclim, Gower, MaxEnt, SVM) in all AOGCMs. RCP: Representative Carbon Pathway.
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Figure 3-5 Comparison of current and ensemble future predictions for Xylocopa abbreviata, 

Xylocopa truxali, and Xylocopa vestita. The maps for the future were generated by the average 

suitability of the four RCP scenarios, for each species. The color scale corresponds to the 

suitability values for the three species in each of the current and future climate scenarios 

considered. 
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Overall, the amount of PAs for all species will decrease in the future in 

comparison to the current scenario (Tab. 3-3). Even though, for some species it seems 

that the PA percentage increases in the future, since the overall distribution range area 

for the species decreases, the absolute protected range areas in the will also decrease. 

Additionally, for all three species, the amount of range in the future was at least 75% 

smaller in comparison to their range size found in the current scenario. For example, 

only 17.07% of X. abbreviata’s current predicted range (78,404 grid cells) were 

predicted in the future (13,379 grid cells), accounting for 83.93% of range loss. 

Moreover, suitability loss within protected areas utmost relevant, for instance X. 

abbreviata’s will lose 88.94% of its current projected areas . This very same trend was 

observed for X. truxali (~9% of the areas predicted in the current scenario were suitable 

in the future and ~70% of protected areas loss) and X. vestita (only ~1% of the areas 

predicted in the current scenario were suitable in the future and ~90% of protected areas 

loss). 

Table 3-3 Distribution range size (in grid cells) in both present and future ensemble 

distributions (all scenarios) and percentage of distribution range and protected areas loss in both 

present and future scenarios for Xylocopa abbreviata, Xylocopa truxali, and Xylocopa vestita. 

The numbers within brackets in the columns regarding the percentage of protected distribution 

range for each species refer to the raw amount of grid cells predicted within protected areas. 

 

Species 
Current 

range 
Future 
range  

Range  
loss 

Current 
protected 

range  

Future 
protected 

range  

Protected 
range  
loss 

X. abbreviata 78404 13379 82.93%  2369 362 88.94% 

X. truxali 26170   2396 90.84%    571  179 68.65% 

X. vestita 10397     114 98.90%    273   18 93.30% 

Considering the current and consensual future (average off all four RCPs by each 

species) potential distributions obtained with all different predictive methods, X. 

abbreviata, X. truxali, and X. vestita are expected to occur in some of the available South 

American protected areas (Fig. 3-6). Nonetheless, Brazilian southeastern protected areas 

may provide better refuges than northwestern ones, which is set to lose most of the 

current suitable overlapping. 
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Figure 3-6 Current and future distribution ranges for Xylocopa abbreviata (A and B), Xylocopa 

truxali (C and D), and Xylocopa vestita (E and F) overlapped with Brazilian’s strict use 

protected areas network (IUCN’s classes I to IV).  The three maps for the future scenario 

represent the consensual distribution all maps obtained from the ensembles of each 

Representative Concentration Pathway. Green polygons refer to the suitable area above the 

threshold no-omission obtain from the present ensemble by each species. Yellow polygons refer 

to Brazilian’s protected areas overlapping with the species’ predicted range. Red polygons refer 

to the protected areas not suitable for the species..  

A B 

C D 

E F 
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3.4 DISCUSSION 

Here, we produced the first prediction of range distribution for the carpenter bees 

X. abbreviata, X. truxali, and X. vestita, under both current and future scenarios with 

different levels of predicted climate changes, from the most optimistic to the most 

pessimistic one, but also intermediary scenarios for 2070. Furthermore, we estimated 

the amount of their ranges that are and will be potentially protected considering the 

current network of the strict use conservation units in South America. In addition, we 

observed that the potential range of the species is expected to shift southeastwards in 

response to the potential climate changes around the year 2070. 

Our results show that these carpenter bees may suffer a significant reduction in 

their distribution areas due to climatic changes, particularly in areas of the Midwest . We 

report high loss levels of both suitable areas and environmental protected areas 

specifically. For instance, X. vestita will potentially loose, respectively, ~98% and ~90% 

of its range into the next 50 years. This result is consistent with the findings of a previous 

study that investigated the overall impact of climate change on pollination services in  

Brazilian native species. Based on two different climate scenarios for the years of 2050 

and 2080, Giannini et al. (2012) showed a reduction of the total of suitable areas for 

nine out of ten species of Brazilian native bees. Nonetheless, this result was the opposite 

for more generalist species (Silva et al., 2015), exotic species (Silva et al., 2017), or 

even species from more xeric regions in Australia (Silva et al., 2018). 

Besides Giannini et al. (2012), we have knowledge of only six previous studies 

that analyzed future climate change scenarios for Brazilian bees (Giannini et al., 2017a, 

2017b, 2013a; Martins et al., 2015; Nemésio et al., 2016; Silva et al., 2015), and only 

one of them modeled the distribution of Xylocopa species. For one of the species 

evaluated in Giannini et al. (2013), there was a potential loss of about 90% of the area 

of occupation predicted for it in the next 40 years. On the same direction, Martins et al. 

(2015) showed that the distribution of the Neotropical bee Bombus bellicosus Smith, 

1879 should move to southwards to climatically more favorable areas in the South 

American continent. The only case of range expansion in the future scenarios was shown 

by Silva et al. (2015), where the orchid bee Eulaema nigrita Lepeletier (1841) is 

expected to increase its future range, especially in deforested man-related areas. The 

rare orchid-bee, Euglossa marianae Nemésio (2011), which occupies highly fragmented 

habitats in eastern Brazil, is expected to be resistant to climate change, still the 
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fragmentation of its natural habitats may prevent its long-term survival in and increase 

its risk of extinction (Nemésio et al., 2016). In another study, Giannini et al. (2017a) 

detected a possible suitability change for populations of the stingless bee, Melipona 

subnitida Ducke (1910), towards the edges of its current distribution range in the future, 

with consequent disconnections with the central core of its current distribution. Such 

future change threatens the dispersion ability and the gene flow among populations of 

this species and puts it at risk of future extinction Finally, the most recent study showed 

the negative impacts of climate change on agricultural production of crop plants due to 

the reduction of important pollinating bee species (Giannini et al., 2017b). 

Understanding a species’ ecological and biological requirements, may improve 

the chances of its future conservation. Regrettably, basic ecological information 

regarding many of interspecific interactions the modeled carpenter bees (and other 

Neotropical insects in general) remain unknown (the so called Eltonian shortfall; 

Cardoso et al., 2011; Hortal et al., 2015), and the possibility that these bees change their 

future ranges implies that the interactions they maintain with plant species will be kept 

or they may develop new interactions with other plant species. The eventual loss of 

interactions the species currently maintains with plant species in the Brazilian Cerrado 

savanna is also likely. In this scenario, while these bees’ ranges contracts 

southeastwards, the plants they interact with may dislocate elsewhere, disrupting their 

interaction, both phenologically (Memmott et al., 2007) and/or geographically 

(Parmesan and Yohe, 2003; Schweiger et al., 2012, 2008). 

The use of ENMs to endorse decision makers regarding species conservation in 

the future climate change scenarios is not a negligible task, primarily due to the resulting 

potential distributions are impossible to be truly validated at the field (Araújo et al., 

2005), since the future is yet to come. Additionally, the AOGMs we used may be 

underestimated and the climate change effects may be even worse than previously 

expected (Fischer et al., 2018; Steffen et al., 2018) and the results we obtain, 

consequently, wrong. Nonetheless, ENMs are still one of the best alternatives to discuss 

species conservation under future climate change (Guisan et al., 2013; Hannah et al., 

2007). The current network of PAs distributed in South America, especially those in 

Brazil’s southeastern portion, could be able to protect small non-related portions of the 

modeled carpenter bees under both the current and the future climate change scenarios. 

Regardless, the presence of the modeled species within a PA in the current scenario does 
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not quite mean they will be protected in the future. The current effectiveness of a PA in 

protecting these carpenter bees (and other bee species as well) may vary, especially 

because such areas were, generally, created without any ecological criteria (Asaad et al., 

2017). In addition, when we consider the future climate change scenarios, the current 

network of protected areas will not be enough to protect species (Hannah et al., 2007). 

Considering this situation, future implementation of new PAs need to be based on 

ecological theories rather than only on the subjective criteria, such as scenic beauty or 

political interests (Asaad et al., 2017; Hannah et al., 2007). 

The need for countries around the world to assess the impacts of climate change 

on pollination of economically farmed species and their potential effects on food 

security was discussed by the World Summit on Food Security (FAO, 2009). Food 

security involves physical, social, and economic access to food at all times for all people 

(FAO, 2009), in order to meet their food needs and preferences. Thus, climate change 

can significantly affect food security by altering crop growth and yield (Costanza et al., 

2014), impact on crop prices, cause land abandonment, migration, and urbanization (Yu 

et al., 2012). This is particularly significant as the pollination services provided by 

native bees are important for maintaining the diversity of natural ecosystems as well as 

for agriculture and food production (Costanza et al., 2014).  

Globally, climate chance is expected to cause a 14% per capita decline in cereal 

production by 2030 (Funk and Brown, 2009). It is expected that Brazilian crop 

production may be affected by climate change, but the development and the use of proper 

agricultural technology could drive productivity positively, despite the effects of the 

worst climate change effects projected for some crops, as soybean (Caetano et al., 2018). 

The projected total loss in Brazilian production estimated by 2070 ranges from 2 to 5 

billion dollars (Pinto et al., 2008). Therefore, it is important to outline strategies aiming 

to reduce pollinators  population declines (Giannini et al., 2017a) and, simultaneously, 

improve crop productivity by promoting better income for farmers and helping to 

minimize the additional losses of natural areas for agriculture  (Costanza et al., 2014; 

Pecl et al., 2017). Henceforth, continuous efforts to elucidate how pollinators species 

will be distributed in the future, foremost increasing the area and representativeness of 

PAs, is highly recommended to assure the continuity of ecological function and 

Humanity well-being in times to come. In this direction, our results are even utmost 

alarming, considering the current Brazilian policies of weakening federal environmental 
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organs and signaling disregarding Global Climate Change policies, ignoring the direct 

impacts of pollination decline on Brazil’s largest economic activity and the Brazilian 

greatest current commodity: agriculture. 

3.5 REFERENCES 

Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). 
spThin: An R package for spatial thinning of species occurrence records for use in 
ecological niche models. Ecography, 38(5), 541–545. https://doi.org/10.1111/ecog.01132 

Aizen, M. A., & Harder, L. D. (2009). The Global Stock of Domesticated Honey Bees Is 
Growing Slower Than Agricultural Demand for Pollination. Current Biology, 19(19), 
915–918. 

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution 
models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 
43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x 

Araújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). Validation of species-climate 
impact models under climate change. Global Change Biology, 11(9), 1504–1513. 
https://doi.org/10.1111/j.1365-2486.2005.01000.x 

Araújo, M. B., & Peterson, A. T. (2012). Uses and misuses of bioclimaic envelope modeling. 
Ecology, 93(7), 1527–1539. https://doi.org/10.1890/07-1861.1 

Araújo, M. B., & Rozenfeld, A. (2014). The geographic scaling of biotic interactions. 
Ecography, 37(5), 406–415. https://doi.org/10.1111/j.1600-0587.2013.00643.x 

Asaad, I., Lundquist, C. J., Erdmann, M. V., & Costello, M. J. (2017). Ecological criteria to 
identify areas for biodiversity conservation. Biological Conservation, 213, 309–316. 
https://doi.org/10.1016/j.biocon.2016.10.007 

Barry, S., & Elith, J. (2006). Error and uncertainty in habitat models. Journal of Applied 
Ecology, 43, 413–423. 

Benevides, C. R., Gaglianone, M. C., & Hoffmann, M. (2009). Visitantes florais do maracujá-
amarelo (Passiflora edulis f. flavicarpa Deg. Passifloraceae) em áreas de cultivo com 
diferentes proximidades a fragmentos florestais na região Norte Fluminense, RJ. Revista 
Brasileira de Entomologia, 53(3), 415–421. https://doi.org/10.1590/S0085-
56262009000300016 

Booth, T. H., Nix, H. A., Busby, J. R., & Hutchinson, M. F. (2014). Bioclim: The first species 
distribution modelling package, its early applications and relevance to most current 
MaxEnt studies. Diversity and Distributions, 20(1), 1–9. 
https://doi.org/10.1111/ddi.12144 

Buchmann, S. L. (1983). Buzz pollination in angiosperms. In C. E. JONES & R. J. LITTLE 
(Eds.), Handbook of experimental pollination biology (pp. 73–117). New York, Van 
Nostrand Reinhold, 558 p. 

Caetano, J. M., Tessarolo, G., De Oliveira, G., da Silva e Souza, K., Felizola Diniz-Filho, J. A., 
& Nabout, J. C. (2018). Geographical patterns in climate and agricultural technology drive 
soybean productivity in Brazil. PLoS ONE, 13(1), 1–16. 
https://doi.org/10.1371/journal.pone.0191273 



 

79 
 

Camillo, E. (2003). Polinização de maracujá. Ribeirão Preto: Holos. 

Cardoso, P., Erwin, T. L., Borges, P. A. V., & New, T. R. (2011). The seven impediments in 
invertebrate conservation and how to overcome them. Biological Conservation, 144(11), 
2647–2655. https://doi.org/10.1016/j.biocon.2011.07.024 

Cattell, R. B. (1966). The scree test for the numbers of factors. Multivariate Behavioral 
Research, 1(August), 245–276. https://doi.org/10.1207/s15327906mbr0102 

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., … 
Turner, R. K. (2014). Changes in the global value of ecosystem services. Global 
Environmental Change, 26(1), 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 

Development Core Team, R. (2018). R: A language and environment for statistical computing. 
Viena: R Foundation for Statistical Computing. 

Distefano, C., Zhu, M., & Mîndrilă, D. (2009). Understanding and using factor scores: 
Considerations for the applied researcher. Practical Assessment, Research & Evaluation, 
14(20), 1–11. https://doi.org/10.1.1.460.8553 

FAO. (2009). FAO—Food and Agriculture Organization of the United Nations. In Declaration 
of the World Summit on Food Security. Rome. 

Fischer, H., Meissner, K. J., Mix, A. C., Abram, N. J., Austermann, J., Brovkin, V., … Zhou, 
L. (2018). Palaeoclimate constraints on the impact of 2 °c anthropogenic warming and 
beyond. Nature Geoscience, 11(7), 474–485. https://doi.org/10.1038/s41561-018-0146-0 

Fitzpatrick, Ú., Murray, T. E., Paxton, R. J., Breen, J., Cotton, D., Santorum, V., & Brown, M. 
J. F. (2007). Rarity and decline in bumblebees - A test of causes and correlates in the Irish 
fauna. Biological Conservation, 136(2), 185–194. 
https://doi.org/10.1016/j.biocon.2006.11.012 

Funk, C. C., & Brown, M. E. (2009). Declining global per capita agricultural production and 
warming oceans threaten food security. Food Security, 1(3), 271–289. 
https://doi.org/10.1007/s12571-009-0026-y 

Garcia, M. T. A., & Hoc, P. S. (1997). Floral biology and reproductive system of Passiflora 
caerulea (Passifloraceae). Beitrage Zur Biologie Der Pflanzen, 71, 1–21. 

Gerling, D., Hurd, P. D., & Hefetz, A. (1983). Comparative behavioral biology of two Middle 
East species of carpenter bees (Xylocopa Latreille) (Hymenoptera: Apoidea). Smithsonian 
Contributions to Zoology, 369, 1–33. 

Ghazoul, J. (2005). Buzziness as usual? Questioning the global pollination crisis. Trends in 
Ecology and Evolution, 20(7), 367–373. https://doi.org/10.1016/j.tree.2005.04.026 

Giannini, T. C., Acosta, A. L., Garófalo, C. A., Saraiva, A. M., Alves-dos-Santos, I., & 
Imperatriz-Fonseca, V. L. (2012). Pollination services at risk: Bee habitats will decrease 
owing to climate change in Brazil. Ecological Modelling, 244, 127–131. 

Giannini, T. C., Acosta, A. L., Silva, C. I. da, de Oliveira, P. E. A. M., Imperatriz-Fonseca, V. 
L., & Saraiva, A. M. (2013). Identifying the areas to preserve passion fruit pollination 
service in Brazilian Tropical Savannas under climate change. Agriculture, Ecosystems and 
Environment, 171(June), 39–46. https://doi.org/10.1016/j.agee.2013.03.003 

Giannini, T. C., Costa, W. F., Cordeiro, G. D., Imperatriz-Fonseca, V. L., Saraiva, A. M., 
Biesmeijer, J., & Garibaldi, L. A. (2017). Projected climate change threatens pollinators 
and crop production in Brazil. PloS One, 12(8), e0182274. 



 

80 
 

https://doi.org/10.1371/journal.pone.0182274 

Giannini, T. C., Maia-Silva, C., Acosta, A. L., Jaffé, R., Carvalho, A. T., Martins, C. F., … 
Imperatriz-Fonseca, V. L. (2017). Protecting a managed bee pollinator against climate 
change: strategies for an area with extreme climatic conditions and socioeconomic 
vulnerability. Apidologie, 48(6), 784–794. https://doi.org/10.1007/s13592-017-0523-5 

Giannini, T. C., Pinto, C. E., Acosta, A. L., Taniguchi, M., Saraiva, A. M., & Alves-dos-Santos, 
I. (2013). Interactions at large spatial scale: The case of Centris bees and floral oil 
producing plants in South America. Ecological Modelling, 258, 74–81. 
https://doi.org/10.1016/j.ecolmodel.2013.02.032 

Golicher, D., Ford, A., & Cayuela, L. (2012). Pseudo-absences, pseudo-models and pseudo-
niches : pitfalls of model selection based on the area under the curve. International Journal 
of Geographical Information Science, 26(11), 2049–2063. 

Goulson, D. (2003). Effects of Introduced Bees on Native Ecosystems. Annual Review of 
Ecology, Evolution, and Systematics, 34(1), 1–26. 
https://doi.org/10.1146/annurev.ecolsys.34.011802.132355 

Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. 
I. T., … Buckley, Y. M. (2013). Predicting species distributions for conservation decisions. 
Ecology Letters, 16(12), 1424–1435. https://doi.org/10.1111/ele.12189 

Hannah, L., Midgley, G. F., Andelman, S., Araujo, M. B., Hughes, G., Martinez-Meyer, E., … 
Williams, P. J. (2007). Protected area needs in a changing climate. Frontiers in Ecology 
and the Environment, 5(3), 131–138. https://doi.org/10.1890/1540-
9295(2007)5[131:PANIAC]2.0.CO;2 

Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L., & Totland, Ø. (2009). How does climate 
warming affect plant-pollinator interactions? Ecology Letters, 12(2), 184–195. 
https://doi.org/10.1111/j.1461-0248.2008.01269.x 

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high 
resolution interpolated climate surfaces for global land areas. International Journal of 
Climatology, 25, 1965–1978. 

Hijmans, R. J., Phillips, S., & Leathwi, J. (2017). dismo: Species Distribution Modeling. 
Retrieved from https://cran.r-project.org/package=dismo 

Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006). Evaluating the ability 
of habitat suitability models to predict species presences. Ecological Modelling, 199(2), 
142–152. https://doi.org/10.1016/j.ecolmodel.2006.05.017 

Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., & Ladle, R. J. 
(2015). Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity. Annual 
Review of Ecology, Evolution, and Systematics, 46(1), 523–549. 
https://doi.org/10.1146/annurev-ecolsys-112414-054400 

Hurd, P. D. (1978). An annotated catalog of the carpenter bees (genus Xylocopa Latr.) of the 
Western Hemisphere (Hymenoptera, Anthophoridae). Washington Smithsonian 
Institution. 

Hurd, P. D., & Moure, J. S. (1963). A classification of the large carpenter bees (Xylocopini) 
(Hymenoptera: Apoidea). University of California Publications in Entomology, 29, 1–365. 

Jiménez-Valverde, A., Peterson, A. T., Soberón, J., Overton, J. M., Aragón, P., Lobo, J. M., … 
Lobo, J. M. (2011). Use of niche models in invasive species risk assessments. Biological 



 

81 
 

Invasions, 13(12), 2785–2797. https://doi.org/10.1007/s10530-011-9963-4 

Junqueira, C. N., & Augusto, S. C. (2017). Bigger and sweeter passion fruits: effect of pollinator 
enhancement on fruit production and quality. Apidologie, 48(2), 131–140. 
https://doi.org/10.1007/s13592-016-0458-2 

Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab: An S4 Package for 
Kernel Methods in R. Journal of Statistical Software, 11(9), 1–20. Retrieved from 
http://www.jstatsoft.org/v11/i09/ 

Kremen, C., Williams, N. M., Aizen, M. A., Gemmill-Herren, B., LeBuhn, G., Minckley, R., 
… Ricketts, T. H. (2007). Pollination and other ecosystem services produced by mobile 
organisms: A conceptual framework for the effects of land-use change. Ecology Letters, 
10(4), 299–314. https://doi.org/10.1111/j.1461-0248.2007.01018.x 

Lawley, D. N., & Maxwell, A. E. (1962). Factor analysis as a statistical method. Wiley for the 
Royal Statistical Society, 12(3), 209–229. 

Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of 
occurrence in the prediction of species distributions. Ecography, 28(3), 385–393. 
https://doi.org/10.1111/j.0906-7590.2005.03957.x 

Liu, C., White, M., & Newell, G. (2011). Measuring and comparing the accuracy of species 
distribution models with presence-absence data. Ecography, 34, 232–243. 

Lobo, J. M. (2016). The use of occurrence data to predict the effects of climate change on 
insects. Current Opinion in Insect Science, 17, 62–68. 
https://doi.org/10.1016/j.cois.2016.07.003 

Lobo, J. M., & Tognelli, M. F. (2011). Exploring the effects of quantity and location of pseudo-
absences and sampling biases on the performance of distribution models with limited point 
occurrence data. Journal for Nature Conservation, 19(1), 1–7. 
https://doi.org/10.1016/j.jnc.2010.03.002 

Lucas, A. (2018). amap: Another Multidimensional Analysis Package. 

Martins, A. C., Silva, D. P., De Marco, P., & Melo, G. A. R. (2015). Species conservation under 
future climate change: the case of Bombus bellicosus, a potentially threatened South 
American bumblebee species. Journal of Insect Conservation, 19(1), 33–43. 
https://doi.org/10.1007/s10841-014-9740-7 

McGuffie, K., & Henderson-Sellers, A. (2014). A Climate Modelling Primer. Oxford: John 
Wiley & Sons. 

Memmott, J., Craze, P. G., Waser, N. M., & Price, M. V. (2007). Global warming and the 
disruption of plant-pollinator interactions. Ecology Letters, 10(8), 710–717. 
https://doi.org/10.1111/j.1461-0248.2007.01061.x 

Memmott, J., Waser, N. M., & Price, M. V. (2004). Tolerance of pollination networks to species 
extinctions. Proceedings of the Royal Society of London. Series B: Biological Sciences, 
271(1557), 2605–2611. https://doi.org/10.1098/rspb.2004.2909 

Michener, C. D. (2007). The Bees of The World. The Johns Hopkings University Press. 

Nemésio, A., Silva, D. P., Nabout, J. C., & Varela, S. (2016). Effects of climate change and 
habitat loss on a forest-dependent bee species in a tropical fragmented landscape. Insect 
Conservation and Diversity, 9(2), 149–160. https://doi.org/10.1111/icad.12154 

Nix, H. (1986). A biogeographic analysis of Australian elapid snakes. In Longmore, R., Ed., 



 

82 
 

Atlas of Elapid Snakes of Australia. Australian Flora and Fauna Series No. 7 (pp. 4–15). 
Canberra: Australian Government Publishing Service. 

Ovalle-Rivera, O., Läderach, P., Bunn, C., Obersteiner, M., & Schroth, G. (2015). Projected 
shifts in Coffea arabica suitability among major global producing regions due to climate 
change. PLoS ONE, 10(4). https://doi.org/10.1371/journal.pone.0124155 

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual 
Review of Ecology and Systematics, 37(1), 637–669. 
https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 

Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts 
across natural systems. Nature, 421, 37. https://doi.org/10.1038/nature01286 

Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend Peterson, A. (2007). Predicting 
species distributions from small numbers of occurrence records: A test case using cryptic 
geckos in Madagascar. Journal of Biogeography, 34(1), 102–117. 
https://doi.org/10.1111/j.1365-2699.2006.01594.x 

Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I. C., … Williams, 
S. E. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and 
human well-being. Science, 355(6332). https://doi.org/10.1126/science.aai9214 

Peterson, A. T., & Soberón, J. (2012). Species distribution modeling and ecological niche 
modeling: Getting the Concepts Right. Natureza a Conservacao, 10(2), 102–107. 
https://doi.org/10.4322/natcon.2012.019 

Peterson, A. T., Soberón, J., Pearson, R., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., 
& Araújo, M. B. (2011). Ecological niches and geographic distributions. Ecological 
niches and geographic distributions (Vol. 94). 

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of 
species geographic distributions. International Journal of Global Environmental Issues, 
(190), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 

Phillips, S. J., & Dudík, M. (2008). Modeling of species distribution with Maxent: new 
extensions and a comprehensive evalutation. Ecograpy, 31(December 2007), 161–175. 
https://doi.org/10.1111/j.2007.0906-7590.05203.x 

Pinto, H. S., Assad, E., Junior, J. Z., Evangelista, Sr., Otavian,  a F., Ávila, Amh., … Coral, G. 
(2008). Aquecimento Global e a Nova Geografia da Produção Agrícola no Brasil. 
Embrapa. https://doi.org/10.1080/20464177.2005.11020183 

Plate, T., & Heiberger, R. (2016). abind: Combine Multidimensional Arrays. Retrieved from 
https://cran.r-project.org/package=abind 

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). 
Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 
25(6), 345–353. https://doi.org/10.1016/j.tree.2010.01.007 

Potts, S. G., Imperatriz-Fonseca, V., Ngo, H. T., Aizen, M. A., Biesmeijer, J. C., Breeze, T. D., 
… Vanbergen, A. J. (2016). Safeguarding pollinators and their values to human well-
being. Nature, 540(7632), 220–229. https://doi.org/10.1038/nature20588 

Revelle, W. (2018). psych: Procedures for Personality and Psychological Research. Illinois, 
USA: Northwestern University. Retrieved from https://cran.r-project.org/package=psych 

Rocchini, D., Hortal, J., Lengyel, S., Lobo, J. M., Jiménez-Valverde, A., Ricotta, C., … 



 

83 
 

Chiarucci, A. (2011). Accounting for uncertainty when mapping species distributions: The 
need for maps of ignorance. Progress in Physical Geography, 35(2), 211–226. 

Roubik, D. W. (1995). Applied pollination in tropical America. Pollination of cultivated plants 
in the tropics. FAO Agricultural Services Bulletin (Vol. 118). 

Sazima, I., & Sazima, M. (1989). Mamangavas e irapuás (Hymenoptera, Apoidea): Visitas, 
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CAPÍTULO 4  

CONCLUSÕES GERAIS 

Os resultados do capítulo um mostraram que a inclusão do componente biótico 

melhorou nosso modelo para a abelha exótica no método preditivo MaxEnt, mas não 

para Bioclim e SVM. A modelagem de distribuição potencial de L. huberi no cenário 

presente foi mais influenciada pelo tratamento com predições isoladas de cada planta 

associada transpostas em mapa de presença ausência (SEP-PA), dentre os cinco 

tratamentos variando composições de componentes bióticos (CLIMA, SEP-PA, STK-

PA, STK-SUIT, SEP-SUIT). Assim, selecionamos SEP-PA para modelar a distribuição 

futura de L. huberi. Identificamos que distribuição de áreas adequadas a L. huberi tende 

diminuir com deslocamento expressivo para o Norte das áreas atualmente ocupadas na 

América do Sul em todos os cenários considerados, com destaque no cenário mais 

pessimista (RCP 8.5), tanto para L. huberi quanto para as sete espécies de plantas. 

Já no capítulo dois as três espécies de abelhas nativas perderam significativas 

áreas atualmente ocupadas, especialmente na região centro-oeste brasileira, com redução 

total detectada de 82.93% para X. abbreviata, 90.84% para X. truxali e 98.90% para X. 

vestita. Em reflexo disso, as áreas de proteção ambiental atualmente ocupadas também 

sofrerão perdas no futuro contabilizando redução de 88.94% para X. abbreviata, 68.65% 

para X. truxali, e 93.30% para X. vestita. Esses resultados são ainda mais alarmantes, 

considerando-se as atuais políticas brasileiras de enfraquecimento dos órgãos ambientais 

federais e sinalização de se desconsiderar as políticas internacionais de mitigação às 

Mudanças Climáticas, ignorando os impactos diretos do declínio da polinização na maior 

atividade econômica, e atualmente a maior comódite, do Brasil: a agricultura. 

A falta de conhecimento sobre os efeitos das mudanças climáticas no 

comportamento de abelhas e como suas distribuições podem ser afetadas é preocupante 

em muitos níveis, particularmente, em impactos nas relações interespecíficas, nos 

serviços ecossistêmicos economicamente significantes à produção agrícola global bem 

como na manutenção da diversidade do Cerrado, um dos hotspots mundiais para 

conservação da biodiversidade. Portanto, esforços contínuos para elucidar como as 

espécies são potencialmente distribuídas, hoje e no futuro, são de extrema importância 

em um mundo que está sempre mudando, especialmente devido ao resultado das 

atividades humanas. Nós esperamos que os resultados apresentados aqui, eventualmente, 
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deixem fundamentos teóricos a tal propósito e que sirvam tanto aos interessados em 

estudar modelos de nicho com inclusão das interações Eltonianas, quanto aos 

conservacionistas para que possam tomar medidas mitigadoras, presentes e futuras, dos 

impactos ou danos decorrentes dos temas abordados em cada estudo.  



 

 

 
 


